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Abstract

This paper considers modelling and detecting structure breaks associated with cross-

sectional dependence for large dimensional panel data models, which are popular in many

fields, including economics and finance. We propose a dynamic factor structure to measure

the degree of cross-sectional dependence. The extent of such cross-sectional dependence

is parameterized as an unknown parameter, which is defined by assuming that a small

proportion of the total factor loadings are important. Compared with the usual param-

eterized style, this exponential description of extent covers the case of small proportion

of the total sections being cross–sectionally dependent. We establish a ‘moment’ criterion

to estimate the unknown based on the covariance of cross-sectional averages at different

time lags. By taking into account the fact that the serial dependence of common factors is

stronger than that of idiosyncratic components, the proposed criterion is able to capture

weak cross–sectional dependence that is reflected on relatively small values of the unknown

parameter. Due to the involvement of some unknown parameter, both joint and marginal

estimators are constructed. This paper then establishes that the joint estimators of a pair

of unknown parameters converge in distribution to bivariate normal. In the case where

the other unknown parameter is being assumed to be known, an asymptotic distribution

for an estimator of the original unknown parameter is also established, which naturally

coincides with the joint asymptotic distribution for the case where the other unknown pa-

rameter is assumed to be known. Simulation results show the finite–sample effectiveness of

the proposed method. Empirical applications to cross-country macro-variables and stock

returns in SP500 market are also reported to show the practical relevance of the proposed

estimation theory.
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estimation; strong factor loading.
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1 Introduction

The analysis of large dimensional panel data attracts ever-growing interest in some modern

scientific fields, especially in economics and finance. Cross–sectional dependence is common

in large dimensional panel data analysis and the literature focuses on testing the existence

of cross-sectional dependence. A survey on description and testing of cross-sectional depen-

dence is given in Sarafidis and Wansbeek (2012). Pesaran (2004) utilizes sample correlations

to test cross-sectional dependence while Baltagi, Feng and Kao (2012) extend the classical La-

grangian multiplier (LM) test to the large dimensional case. Chen, Gao and Li (2012) and

Hsiao, Pesaran and Pick (2012) consider cross-sectional dependence tests for nonlinear econo-

metric models.

When more and more cross–sections are grouped together, cross-sectional dependence ap-

pears to be quite natural and common. Cross-sectional independence is an extreme hypothesis.

Rejecting such a hypothesis does not provide much information about the relationship between

different cross–sections under investigation. In view of this, measuring the degree of cross-

sectional dependence is more important than just testing for its presence. As we know, in com-

parison with cross–sectional dependence tests, the literature contributes very little to accessing

the extent of cross-sectional dependence. Ng (2006) uses spacings of cross-sectional correla-

tions to exploit the ratio of correlated subsets over all sections. Bailey, Kapatanios and Pesaran

(2015) use a factor model to describe cross-sectional dependence and develop estimators that

are based on a moment method. We will contribute to the descriptions and measures of the

extent of cross-sectional dependence for large dimensional panel data with N cross-section units

and T time series. The first natural question is: how to describe the cross-sectional depen-

dence ? To deal with this issue, the panel data literature mainly discusses two different ways of

modelling cross-sectional dependence: the spatial correlation and the factor structure approach

(see, for example, Sarafidis and Wansbeek (2012)). In this paper, we use the factor structure

approach. The factor model is not only a powerful tool to characterize cross-sectional depen-

dence for economic and financial data, but also efficient in dealing with statistical inference for

high dimensional data from a dimension-reduction point of view. Some related work includes

Fan, Fan and Lv (2008), Fan, Liao and Mincheva (2011) and Pan and Yao (2008).

With respect to factor structures, there are two common types of factor models: the static

model and the dynamic model. The static model is defined as

xit = µi + β
′

ift + uit, i = 1, 2, . . . , N ; t = 1, 2, . . . , T.

In this model, {µi, i = 1, 2, . . . , N} represent the means of N sections, the components of the

process {ft, t = 1, 2, . . . , T} are called the common shocks or factors, and βi is a vector of factor

loadings for unit i on the common factors ft for each i = 1, 2, . . . , N . The term static factor
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model refers to the static relationship between xit and ft, but ft itself can be a dynamic process.

The dynamic factor model is written as

xit = µi + β
′

i(L)ft + uit, i = 1, 2, . . . , N ; t = 1, 2, . . . , T,

where βi(L) is a vector of dynamic factor loadings of order s, i.e βi(L) = βi0 + βi1L+ βi2L
2 +

· · · + βisLs. If s is finite, the model is called a dynamic factor model. If s can be infinity, it is

called a generalized dynamic factor model. Under each case, ft = C(L)εt, where {εt, t ∈ Z} are

independent and identically distributed (i.i.d) and C(L) is a coefficient matrix with time lags,

i.e., {ft, t ∈ Z} is a dynamic process. Based on the concept of a factor model, the extent of cross-

sectional dependence in observed data xit can be reflected in the strength of factor loadings, and

the cross-sectional dependence is caused by common factors ft.

While it is a rare phenomenon to have cross-sectional independence for all N sections, it is

also unrealistic to assume that all N sections are dependent. As cross-sectional dependence can

be reflected in factor loadings, we impose some conditions on factor loadings in order to derive one

part that contains cross-sectional dependent units and another part that includes cross-sectional

independent sections. The simplest method is to assume that some factor loadings are bounded

away from zero while others are around zero. In this paper, we assume that only [Nα0 ](0 ≤
α0 ≤ 1) of all N factor loadings are individually important. This topic is quite related to the

structural–break literature developed in the econometrics literature. Bai (1997) investigates

multiple structural breaks in the mean for a single linear process, while Bai and Perron (1998)

estimate breaks in the coefficients of a linear model. Bai (2010) considers common breaks in

the mean for panel data and develops breakpoint analysis under large dimensional cases. By

contrast, as far as we know, the literature that addresses the structural breaks for cross-sectional

dependence is relatively limited. Ng (2006) is one of the few that contributes to breakpoint

analysis of cross–sectional dependence using the spacings. Instead of measuring the extent by

α0N , we adopt the parameterization [Nα0 ]. The proportion of [Nα0 ] over the total N is quite

small which tends to 0 as 0 < α0 < 1, while α0N is comparable to N because of the same order.

In this sense, our model covers some “sparse” cases that only a small part of the sections are

cross-sectionally dependent.

With this description of the extent of cross-sectional dependence, the goal is directed to

propose an approach to estimation of α0. One advantage of our proposed statistic is based on

an assumption for identification. There are several different ways of identifying factor models.

Bailey, Kapatanios and Pesaran (2015) assume that {xt = (x1t, x2t, . . . , xNt)
′

: t = 1, 2, . . . , T}
is a high dimensional time series and decompose it into two parts: a common-factor part and an

idiosyncratic part, both of which are weakly dependent stationary time series. The identification

of their model lies on the assumption that cross-sectional dependence involved in the idiosyn-

cratic part is weaker than that in the common-factor part. This assumption is common in the

literature, e.g. Bai and Ng (2002), Fan, Fan and Lv (2008) and Fan, Liao and Mincheva (2011).

However, we consider an alternative factor model, similar to the idea of Lam and Yao (2012),
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which consists of two parts: the common-factor part driven by a lower-dimensional factor time

series and the idiosyncratic part which is a stationary time series with relatively weaker serial

dependence than the common-factor part. While the literature makes use of distinctive degrees

of cross-sectional dependence in common components and idiosyncratic components respectively,

we utilize distinctive extents of serial dependence in these two parts to attain identifications.

From a point of replacing one condition by another in identification, our assumptions are quite

weak. Moreover, one important advantage is that the new model identification condition leads to

our proposed methodology for estimation of the exponents of cross-sectional dependence, which

can eliminate the influence of idiosyncratic components in the estimation.

The proposal of our estimation procedure is outlined as follows. An estimator for α0 is

proposed by calculating the covariance between x̄t and x̄t+τ for a larger range of α0, i.e., 0 ≤
α0 ≤ 1, where x̄t = 1

N

∑N
i=1 xit and τ > 0. Under the setting and structure of this paper,

furthermore, we have weaker serial dependence in the idiosyncratic part than that in the common

part. Then the leading term in cov(x̄t, x̄t+τ ) will not contain the idiosyncratic part when τ tends

to infinity. In other words, the idiosyncratic components do not bring any noise term to the

proposed criterion.

The main contribution of this paper is summarized as follows:

1. We construct two consistent estimators for α0 by utilizing both joint estimation and

marginal estimation respectively. As the parameter κ0 involved in the proposed crite-

rion is unknown, the joint estimation of α0 and κ0 is adopted. Otherwise, we use the

marginal estimation for α0.

2. We have been able to establish new asymptotic distributions for both the joint and the

marginal estimators. The asymptotic marginal distribution coincides with that for the

joint estimator for the case where κ0 is assumed to be known. Finite–sample performances

of these two kinds of estimators are provided.

3. An additional contribution involves generalizing Theorem 8.4.2 of Anderson (1994). We

establish a new central limit theorem for the sample covariance of a time series under the

case where both the time lag and the sample size tend to infinity simultaneously.

The rest of the paper is organized as follows. The model and the main assumptions are intro-

duced in Section 2. Section 3 proposes both joint and marginal estimators that are based on the

second moment criterion. Asymptotic properties for these estimators are established in Section

4. Section 5 reports the simulation results, which illustrate the effectiveness of the proposed

methods. Section 6 provides empirical applications to cross-country macro-variables and stock

returns in S&P 500 market respectively. Conclusions are included in Section 7. Justification for

the assumptions and all the mathematical proofs are given in Appendices B and C.
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2 The model

Let xit be a double array of random variables indexed by i = 1, . . . , N and t = 1, . . . , T , over

space and time, respectively. The aim of this paper is to measure the extent of the cross-

sectional dependence of the data {xit : i = 1, . . . , N}. In panel data analysis, there are two

common models to describe cross-sectional dependence: spatial models and factor models. In

Bailey, Kapatanios and Pesaran (2015), a static approximate factor model is used. As an exten-

sion, we consider a dynamic factor model:

xit = µi + β
′

i0ft + β
′

i1ft−1 + · · ·+ β′isft−s + uit

= µi + β
′

i(L)ft + uit, i = 1, 2, . . . , N ; t = 1, 2, . . . , T, (2.1)

where ft is the m× 1 vector of unobserved factors (with m being fixed),

βi(L) = βi0 + βi1L+ βi2L
2 + · · ·+ βisLs,

in which βi` = (βi`1, βi`2, . . . , βi`m)
′
, ` = 0, 1, . . . , s are the associated vectors of unobserved factor

loadings and L is the lag operator, here s is assumed to be fixed, and µi, i = 1, 2, . . . , N are

constants that represent the mean values for all sections, and {uit : i = 1, . . . , N ; t = 1, . . . , T}
are idiosyncratic components.

Clearly, we can write (2.1) in the static form:

xit = µi + β
′

iFt + uit, i = 1, 2, . . . , N ; t = 1, 2, . . . , T, (2.2)

where

βi =


βi0

βi1
...

βis


m(s+1)

and Ft =


ft

ft−1

...

ft−s


m(s+1)

.

The dimension of ft is called the number of dynamic factors and is denoted by m. Then

the dimension of Ft is equal to r = m(s + 1). In factor analysis, β
′
iFt is called the common

components of xit.

We first introduce the following assumptions.

Assumption 1. The idiosyncratic component {ut = (u1t, u2t, . . . , uNt)
′
: t = 1, 2, . . . , T} follows

a linear stationary process of the form:

uit =
+∞∑
j=0

φij

( +∞∑
s=−∞

ξjsνj,t−s

)
, (2.3)
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where {νis : i = . . . ,−1, 0, 1, . . . ; s = 0, 1, . . .} is a double sequence of i.i.d. random variables

with mean zero and unit variance, and

sup
0<j<+∞

N∑
i=1

|φij| < +∞ and sup
0<j<+∞

+∞∑
s=−∞

|ξjs| ≤ +∞. (2.4)

Moreover,

E(uituj,t+τ ) = γ1(τ)γ2(|i− j|), (2.5)

where γ2(|i− j|) satisfies

N∑
i,j=1

γ2(|i− j|) = O(N) (2.6)

and γ1(τ) satisfies the condition (2.9) in Assumption 3 below.

Assumption 2. For ` = 0, 1, 2, . . . , s and k = 1, 2, . . . ,m,

βi`k = vi`k, i = 1, 2, . . . , [Nα`k ] and
N∑

i=[Nα`k ]+1

βi`k = O(1), (2.7)

where [Nα`k ] ≤ Nα`k is the largest integer part of Nα`k , 0 < α`k ≤ 1 and vi`k ∼ i.i.d.(µv, σ
2
v)

has finite sixth moment, with µv 6= 0 and σ2
v > 0. Moreover, {vi`k : i = 1, 2, . . . , N ; ` =

0, 1, . . . , s; k = 1, 2, . . . ,m} are assumed to be independent of the factors {ft : t = 1, 2, . . . , T}
and the idiosyncratic components {uit : i = 1, 2, . . . , N ; t = 1, 2, . . . , T}.

Assumption 3. The factors {ft, t = 1, 2, . . . , T} are covariance stationary with the following

representation:

ft =
∞∑
j=0

bjζt−j, (2.8)

where {ζt, t = . . . ,−1, 0, 1, . . .} is an i.i.d sequence of m-dimensional random vectors whose

components are i.i.d with zero mean and unit variance, the fourth moments of {ζt,−∞ < t <

∞} are finite, and the coefficients {bj : j = 0, 1, 2, . . .} satisfy
∑∞

j=0 |bj| < ∞. Furthermore,

the unobserved factors {ft : t = 1, 2, . . . , T} are independent of the idiosyncratic components

{ut : t = 1, 2, . . . , T}. Let γ(k, h) = E(fk,tfk,t+h) and α0 = max`,k(α`k). We assume

∆u,f :=
N−1γ1(τ)

[N2α0−2]
∑s

`1,`2=0

∑m
k=1 γ(k, τ − `2 + `1)

= o(1), (2.9)

where γ1(τ) is defined in (2.5).

Let us briefly discuss how to verify (2.9) using a simple example. Consider the following

model:

xit = µi + βift + uit, i = 1, 2, . . . , N, t = 1, 2, . . . , T, (2.10)
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where the factor loadings {βi : i = 1, 2, . . . , N} satisfy Assumption 2, the factor process {ft : t =

1, 2, . . . , T} is AR(1), i.e., ft = ρ1ft−1 + εt for t = 1, 2, . . . , T , and the idiosyncratic components

uit can be decomposed into two independent parts: the serially correlated part and the cross–

section part, i.e., uit = ζtηi, with {ζt : t = 1, 2, . . . , T} being an AR(1), i.e., ζt = ρ2ζt−1 + εt, t =

1, 2, . . . , T . Moreover, {εt : t = 1, 2, . . . , T} and {εt : t = 1, 2 . . . , T} are both white noises with

zero mean and unit variance, and mutually independent.

For model (2.10), it is easy to derive the values of γ1(τ), γ2(|i − j|) and γ(1, τ) defined in

Assumption 2 and Assumption 3, i.e., γ1(τ) = |ρ2|τ
1−ρ21

, γ(τ) = |ρ1|τ
1−ρ21

and E(ηiηj) = γ2(|i− j|).

Condition (2.9) is then ∆u,f :=
N−1|ρ2|τ (1−ρ21)

[N2α0−2]·|ρ1|τ (1−ρ22)
= o(1). It is equivalent to requiring that ρ1

and ρ2 are related by |ρ2| = o([N
2α0−1
τ ] · |ρ1|). We can then see that, if 1

2
< α0 < 1, τ can be

taken as a constant. If 0 < α0 <
1
2
, τ should tend to +∞ and ρ2 should be smaller than ρ1.

Detailed justifications of Assumptions 1-3 are given in Appendix A.

3 The estimation method

The aim of this paper is to estimate the exponent α0 = max`,k(α`k), which describes the extent of

cross-sectional dependence. As in Bailey, Kapatanios and Pesaran (2015) (BKP15), we consider

the cross-sectional average x̄t = 1/N
∑N

i=1 xit and then derive an estimator for α0 from the

information of {x̄t : t = 1, 2, . . . , T}. BKP15 use the variance of the cross-sectional average x̄t

to estimate α0 and carry out statistical inference for an estimator of α0 before they show that

V ar(x̄t) = κ̃0[N2α0−2] +N−1cN +O(Nα0−2), (3.1)

where κ̃0 is a constant associated with the common components and cN is a bias constant incurred

by the idiosyncratic errors. From (3.1), we can see that, in order to estimate α0, BKP15 assume

that 2α0 − 2 > −1, i.e. α0 > 1/2. Otherwise, the second term will have a higher order than the

first term. So the approach by BKP15 will fail in the case of 0 < α0 < 1/2.

In this paper, we propose a new estimator that is applicable to the full range of α0, i.e.,

0 ≤ α0 ≤ 1. Based on the assumption that the common factors possess serial dependence

that is stronger than that of the idiosyncratic components, we construct a so–called covariance

criterion Cov(x̄t, x̄t+τ ), whose leading term does not include the idiosyncratic components for

0 ≤ α0 ≤ 1. In other words, the advantage of this covariance criterion over the variance criterion

V ar(x̄t) lies on the fact that there is no interruption brought by the idiosyncratic components

{uit : i = 1, 2, . . . , N ; t = 1, 2, . . . , T} in Cov(x̄t, x̄t+τ ).

Next, we illustrate how the covariance Cov(x̄t, x̄t+τ ) implies the extent parameter α0 in detail.

Note that [Na] ≤ Na (a ≥ 0) denotes the largest integer part. For simplicity, let [N b] (b ≤ 0)

denote 1
[N−b]

. Moreover, to simplify the notation, throughout the paper we also use the following

notation:

[Nka] := [Na]k, [Na−k] :=
[Na]

Nk
, ∀a, k ∈ R. (3.2)
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But we would like to remind the reader that [Nka] is actually not equal to [Na]k. Next, we

will propose an estimator for α0 under two different scenarios: the joint estimator under the

case of some other parameters being unknown while the marginal estimator for the case of some

other parameters being known.

3.1 The joint estimator (α̃, κ̃)

The joint estimator in this section is proposed when all the parameters involved are unknown.

The marginal estimator proposed in the following section deals with the case where only α0 is

unknown.

Without loss of generality, we assume that α`k = α0,∀` = 0, 1, 2, . . . , s; k = 1, 2, . . . ,m. Let

Assumption 2 hold. Let x̄nt be the cross–sectional average of xit over i = 1, 2, . . . , n with n ≤ N .

Similarly, β̄n`k := 1
n

∑n
i=1 βi`k. Then

E(β̄n`k) =
{ µv, n ≤ [Nα0 ]

[Nα0 ]
n
µv + Kn`k

n
, n > [Nα0 ],

and

V ar(β̄n`k) =
{ σ2

v

n
, n ≤ [Nα0 ]

[Nα0 ]
n2 σ2

v , n > [Nα0 ],

where Kn`k =
∑n

i=[Nα0 ]+1 βi`k.

Then, we have

Cov(x̄nt, x̄n,t+τ ) =
s∑
`=0

m∑
k=1

(
E2(β̄n`k) + V ar(β̄n`k)

)
E(fk,t−`fk,t+τ−`)

+
s∑

`1 6=`2

m∑
k=1

E(β̄n`1k)E(β̄n`2k)E(fk,t−`1fk,t+τ−`2)

=
{ κ0 +O(n−1), n ≤ [Nα0 ]

κ0
[N2α0 ]
n2 +O( [Nα0 ]

n2 ), n > [Nα0 ],
(3.3)

where

κ0 = µ2
v

s∑
`1,`2=0

m∑
k=1

E(fk,t−`1fk,t+τ−`2), (3.4)

in which µv = E[vi`k].

Minimize the following quadratic form in terms of α and κ:

Q
(1)
NT (α, κ) =

[Nα]∑
n=1

n3
(
σ̂n(τ)− κ

)2

+
N∑

n=[Nα]+1

n3
(
σ̂n(τ)− [N2α]

n2
κ
)2

, (3.5)
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where σ̂n(τ) is a consistent estimator for Cov(x̄nt, x̄n,t+τ ) of the form:

σ̂n(τ) =
1

T − τ

T−τ∑
t=1

(
x̄nt − x̄(1)

n

)(
x̄n,t+τ − x̄(2)

n

)
,

with x̄
(1)
n = 1

T−τ
∑T−τ

t=1 x̄nt and x̄
(2)
n = 1

T−τ
∑T−τ

t=1 x̄n,t+τ .

Then, the first order condition for κ is

∂Q
(1)
NT (α, κ)

∂κ
= 0,

which is equivalent to
∑[Nα]

n=1 n
3
(
σ̂n(τ)− κ

)
+ [N2α]

∑N
n=[Nα]+1 n

(
σ̂n(τ)− [N2α]

n2 κ
)

= 0.

This derives

κ = κ(α) :=

∑[Nα]
n=1 n

3σ̂n(τ) +
∑N

n=[Nα]+1 n[N2α]σ̂n(τ)∑[Nα]
n=1 n

3 +
∑N

n=[Nα]+1
[N4α]
n

. (3.6)

We now introduce the additional expressions:

q̂
(1)
1 (α) =

[Nα]∑
n=1

n3σ̂n(τ), q̂
(1)
2 (α) =

N∑
n=[Nα]+1

nσ̂n(τ),

N (1)(α) =

[Nα]∑
n=1

n3 +
N∑

n=[Nα]+1

[N4α]

n
, Q(1) =

N∑
n=1

n3σ̂2
n(τ).

With this and (3.6), we can obtain

κ =
q̂

(1)
1 (α) + [N2α]q̂

(1)
2 (α)

N (1)(α)
. (3.7)

Then

Q
(1)
NT (α, κ) = Q(1) + κ2

[Nα]∑
n=1

n3 + κ2[N4α]
N∑

n=[Nα]+1

n−1 − 2κq̂
(1)
1 (α)− 2κ[N2α]q̂

(1)
2 (α)

= Q(1) + κ2N (1)(α)− 2κ
(
q̂

(1)
1 (α) + [N2α]q̂

(1)
2 (α)

)
= Q(1) −

(
q̂

(1)
1 (α) + [N2α]q̂

(1)
2 (α)

)2

N (1)(α)
. (3.8)

Since Q(1) does not depend on α, minimizing Q
(1)
NT (α, κ) is equivalent to maximizing the term:

Q̂
(1)
NT (α) =

(q̂
(1)
1 (α) + [N2α]q̂

(1)
2 (α))2

N (1)(α)
.

In summary, the joint estimator (α̃, κ̃) can be obtained by

α̃ = arg max
α

Q̂
(1)
NT (α) and κ̃ =

q̂
(1)
1 (α̃) + [N4α̃]q̂

(1)
2 (α̃)

N (1)(α̃)
. (3.9)

This joint estimation method estimates α0 and κ0 simultaneously. The above derivations

show that it is easy to derive α̃ and then κ̃. Of course, we can also use some other estimation

methods to estimate κ0 and then α0. Notice that we use the weight function w(n) = n3 in

each summation part of the objective function Q
(1)
NT (α, κ) of (3.5). The involvement of a weight

function is due to technical necessity in deriving an asymptotic distribution for (α̃, κ̃).
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3.2 The marginal estimator α̂

Although, for simplicity, the first [Nα0 ] sections are assumed to possess important factor load-

ings, the proposed marginal estimation procedure does not rely on the specification of the two

categories in the sequence of the N sections.

From Assumption 2, we have

β̄N`k = N−1

N∑
i=1

βi`k =
[Nα`k ]

N

(∑[Nα`k ]
i=1 vi`k
[Nα`k ]

)
+

1

N

N∑
i=[Nα`k ]+1

βi`k

:= [Nα`k−1]v̄N`k +N−1K`k, (3.10)

where v̄N`k =
∑[Nα`k ]
i=1 vi`k
[Nα`k ]

and K`k =
∑N

i=[Nα`k ]+1 βi`k.

A direct calculation then yields E(β̄N`k) = µv[N
α`k−1] +O(N−1) and

V ar(β̄N`k) =
1

N2
[Nα`k ]σ2

v = [Nα`k−2]σ2
v . (3.11)

Under model (2.1), it follows that for any t = 1, 2, . . . , T − τ ,

x̄t − Ex̄t =

s,m∑
`=0,k=1

β̄N`kfk,t−` + ūt,

x̄t+τ − Ex̄t+τ =

s,m∑
`=0,k=1

β̄N`kfk,t+τ−` + ūt+τ , (3.12)

where x̄t = 1
N

∑N
i=1 xit and ūt = 1

N

∑N
i=1 uit.

By (3.12), Assumptions 1 and 2, we have

Cov(x̄t, x̄t+τ ) =
s∑

`1,`2=0

m∑
k=1

E(β̄N`1kβ̄N`2k)E(fk,t−`1fk,t+τ−`2) + E(ūtūt+τ ) (3.13)

=
s∑
`=0

m∑
k=1

(
E2(β̄N`k) + V ar(β̄N`k)

)
E(fk,t−`fk,t+τ−`)

+
s∑

`1 6=`2

m∑
k=1

E(β̄N`1k)E(β̄N`2k)E(fk,t−`1fk,t+τ−`2) + E(ūtūt+τ ).

Substituting (3.10) into (3.13) ensures

Cov(x̄t, x̄t+τ ) =
s∑
`=0

m∑
k=1

(
µ2
v[N

2α`k−2] +O([Nα`k−2]) +O(N−2)
)
E(fk,t−`fk,t+τ−`)

+
s∑

`1 6=`2

m∑
k=1

(
µ2
v[N

α`1k+α`2k−2] +O([Nα`1k−2]) +O([Nα`2k−2]) +O(N−2)
)
E(fk,t−`1fk,t+τ−`2)

+
1

N2

N∑
i,j=1

E
(
uituj,t+τ

)
.
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Below we consider the case of α`k = α0, ∀` = 0, 1, . . . , s; k = 1, . . . ,m. Then Cov(x̄t, x̄t+τ )

becomes

Cov(x̄t, x̄t+τ ) =
( s∑
`1,`2=0

m∑
k=1

µ2
v[N

2α0−2] +O([Nα0−2]) +O(N−2)
)
E(fk,t−`1fk,t+τ−`2)

+
1

N2

N∑
i,j=1

E
(
uituj,t+τ

)
. (3.14)

We then compare the orders of the two terms
∑s

`1,`2=0

∑m
k=1 µ

2
v[N

2α0−2]E(fk,t−`1fk,t+τ−`2) and

E(ūtūt+τ ).

From Assumption 1, we have

E(ūtūt+τ ) =
1

N2

N∑
i,j=1

E(uituj,t+τ ) =
1

N2

N∑
i,j=1

γ1(τ)γ2(|i− j|) = O

(
γ1(τ)

N

)
,

where we have used Condition (2.6).

By Condition (2.9), we have

E(ūtūt+τ )∑s
`1,`2=0

∑m
k=1 µ

2
v[N

2α0−2]E(fk,t−`1fk,t+τ−`2)
= o(1). (3.15)

A simple manipulation of (3.14) and (3.15) yields

ln
(
Cov(x̄t, x̄t+τ )

)2

≈ ln(κ2
0) + (4α0 − 4) ln(N),

which implies

α0 ≈
ln
(
Cov(x̄t, x̄t+τ )

)2

− ln(κ2
0)

4 ln(N)
+ 1, (3.16)

where κ0 is defined in (3.4).

Hence, for 0 ≤ α0 ≤ 1, α0 can be estimated from (3.16) using a consistent estimator for

Cov(x̄t, x̄t+τ ) given by

σ̂N(τ) =
1

T − τ

T−τ∑
t=1

(x̄t − x̄(1))(x̄t+τ − x̄(2)), (3.17)

where x̄(1) = 1
T−τ

∑T−τ
t=1 x̄t and x̄(2) = 1

T−τ
∑T−τ

t=1 x̄t+τ . Thus, a consistent estimator for α0 is

given by

α̂ =
log
(
σ̂N(τ)

)2

− ln(κ0)2

4 ln(N)
+ 1. (3.18)

If {ut : t = 1, . . . , T} are independent, the term E(ūtūt+τ ) will disappear in (3.14) for any τ .

So under this case, we can take a finite lag τ . Furthermore, if not all α`k are equal to α0, we can

still get an expression similar to (3.16) but with a different value of κ0, which can be estimated

by the joint estimation method given in the previous section.
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3.3 Asymptotic Properties

In this section, we will establish asymptotic distributions for the proposed joint estimator (α̃, κ̃)

and the marginal estimator α̂, respectively. We assume that α`k = α0, ∀` = 0, 1, . . . , s and

k = 1, 2, . . . ,m for simplicity. The notation a � b denotes that a = O(b) and b = O(a).

For any 1 ≤ i, j ≤ m and 0 ≤ h ≤ T − 1, we define

Cij(h) =
1

T − h

T−h∑
t=1

fi,tfj,t+h, cij(h) ≡ σij(h) = E(fi,tfj,t+h). (3.19)

The following theorem establishes an asymptotic distribution for the joint estimator (α̃, κ̃).

Theorem 1. In addition to Assumptions 1-3, we assume that

(i) for some constant δ > 0,

E|ζit|2+2δ < +∞, (3.20)

where ζit is the i-th component of ζt and {ζt : . . . ,−1, 0, 1, . . .} is the sequence appeared in

Assumption 3.

(ii) The lag τ satisfies

τ

(T − τ)δ/(2δ+2)
→ 0, as T →∞, (3.21)

where δ is defined in (3.20).

(iii) The covariance matrix Γ of the random vector(
Cij(h

′
) : i = 1, . . . ,m; j = 1, . . . ,m;h

′
= τ − s, . . . , τ + s

)
(3.22)

is positive definite.

(iv) As (N, T )→ (∞,∞),

√
min([Nα0 ], T − τ) max

(γ1(τ)N1−2α0

µ′vΣτµv
,
(T − τ)−1/2N1−2α0

µ′vΣτµv

)
→ 0, as 0 < α0 ≤

1

2
;

√
min([Nα0 ], T − τ)

N1/2−α0(T − τ)−1/2

µ′vΣτµv
→ 0, as

1

2
< α0 ≤ 1;

(3.23)

and as (N, T )→ (∞,∞),

1

Nα0/2µ′vΣτµv
= o(1). (3.24)

Then as (N, T )→ (∞,∞),

[N2(α̃−α0)]− 1 = OP

(
v
−1/2
NT κ−1

0

)
, (3.25)

κ̃− κ0 = OP

(
v
−1/2
NT

)
, (3.26)
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where vNT = min([Nα0 ], T − τ), and κ̃
√
vNT (N2(α̃−α0) − 1)
√
vNT (κ̃− κ0)

 d−→ N

 0

0

 ,

 4σ2
0 −2σ2

0

−2σ2
0 σ2

0

 , (3.27)

where κ0 is defined in (3.4), Στ = E(FtF
′
t+τ ) and µv = µvem(s+1), in which em(s+1) is an

m(s+ 1)× 1 vector with each element being 1,

σ2
0 = lim

N,T→∞

min([Nα0 ], T − τ)

[Nα0 ]
4µ
′

vΣτΣvΣτµv (3.28)

+ lim
N,T→∞

min([Nα0 ], T − τ)

T − τ
(µ
′

v ⊗ µ
′

v)Ω(µv ⊗ µv)

and

Ω =



ω(τ, τ) · · · ω(τ, τ + s) · · · ω(τ, τ − s) · · · ω(τ, τ)

ω(τ + 1, τ) · · · ω(τ + 1, τ + s) · · · ω(τ + 1, τ − s) · · · ω(τ + 1, τ)
...

...
...

...
...

...
...

ω(τ − s, τ) · · · ω(τ − s, τ + s) · · · ω(τ − s, τ − s) · · · ω(τ − s, τ)

ω(τ, τ) · · · ω(τ, τ + s) · · · ω(τ, τ − s) · · · ω(τ, τ)


, (3.29)

with ω(h, r) =
(
Cov(fi1tfj1,t+h, fi2,tfj2,t+r) : 1 ≤ i1, j1, i2, j2 ≤ m

)
m2×m2

.

While Theorem 1 may just establish a bivariate normal distribution with a singular covari-

ance, it provides a joint distributional structure. We briefly show how to verify Conditions (3.23)

and (3.24) based on the simple model (2.10). For model (2.10), µ
′
vΣτµv = µ2

v
|ρ1|τ

1−|ρ1|2 . Then (3.23)

and (3.24) are equivalent to the following three cases:

(i) 0 < α0 ≤ 1
2
, [Nα0 ] < T − τ, |ρ2|

τ

|ρ1|τN
1−2α0 = o(1), |ρ1|−τ

(T−τ)
1
2N

3
2α0−1

= o(1), |ρ1|
−τ

N
α0
2

= o(1).

(ii) 1
2
< α0 ≤ 1, [Nα0 ] < T − τ, |ρ1|−τ

Nα0−1(T−τ)
1
2

= o(1), |ρ1|
−τ

N
α0
2

= o(1).

(iii) 1
2
< α0 < 1, [Nα0 ] ≥ T − τ, |ρ1|

−τ

Nα0−
1
2

= o(1).

For each of these three cases, we provide a choice of (T,N) and ρ2.

(a) 0 < α0 ≤ 1
2
, [Nα0 ] < T − τ, N = [(|ρ1|−1 + δ)

2τ
α0 ], T = [(|ρ1|−1 + δ)

4τ
α0
−4τ

] + τ, |ρ2| =
1
2
|ρ1| · [N ( 3

2
α0−1) 1

τ ].

(b) 1
2
< α0 ≤ 1, [Nα0 ] < T − τ, N = [(|ρ1|−1 + δ)

2τ
α0 ], T = [(|ρ1|−1 + δ)

4τ
α0
−2τ

] + τ .

(c) 1
2
< α0 ≤ 1, [Nα0 ] ≥ T − τ, N = [(|ρ1|−1 + δ)

τ

α0−
1
2 ], T = [(|ρ1|−1 + δ0)

τα0
α0−

1
2 ] + τ , where

0 < δ0 < δ, and δ > 0 is a constant.

The following theorem establishes an asymptotic distribution for the marginal estimator α̂.

Theorem 2. Under the conditions of Theorem 1, we have√
min([Nα0 ], T − τ)

(N4(α̂−α0) − 1)κ0√
4σ2

0

→ N (0, 1), (3.30)

where σ2
0 is defined in (3.28).
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Theorem 1 establishes some asymptotic properties for the joint estimator (α̃, κ̃). This result

is consistent with that for the marginal estimator α̂ derived in Theorem 2.

From Theorem 2, one can see that α̂ is a consistent estimator of α0. Moreover, by a careful

inspection on the proof of Theorem 2 one can see that Condition (3.23) is not needed to ensure

the consistency of α̂ under (N, T )→ (∞,∞).

When the idiosyncratic components are independent, we can just use a finite lag τ instead

of requiring τ → ∞. In this case, an asymptotic distribution for the estimator α̂ is established

in the following theorem.

Theorem 3. In addition to Assumptions 2 and 3, suppose that τ is fixed and the following

conditions (i)–(iii) hold:

(i) {ut : t = 1, . . . , T} are independent with the mean of ut being 0N×1 and its covariance

matrix being Σu, where 0N×1 is an N × 1 vector with zero components and the spectral norm

||Σu|| is bounded.

(ii)

√
min([Nα0 ], T − τ)

N1−2α0

(T − τ)1/2
→ 0, as 0 < α0 <

1

2
; (3.31)

√
min([Nα0 ], T − τ)

N1/2−α0

(T − τ)1/2
→ 0, as

1

2
< α0 ≤ 1.

(iii) µ
′
vΣτµv 6= 0.

Then, as (N, T )→ (∞,∞), we have√
min([Nα0 ], T − τ) ln (N2)

(
α̂− α0

)
√
σ2

0/κ
2
0

d→ N
(

0, 1
)
,

where κ0 and σ2
0 are defined in (3.4) and (3.28), respectively.

Before we will give the proofs of Theorems 1–3 in Appendices B and C below, we have some

brief discussion about Condition (3.31), which is actually equivalent to the following three cases:

(a) 0 < α0 ≤ 1
2
, [Nα0 ] < T − τ, N1− 3

2α0

(T−τ)
1
2

= o(1);

(b) 1
2
< α0 ≤ 1, [Nα0 ] < T − τ ; N

1
2−

α0
2

(T−τ)
1
2

= o(1);

(c) 1
2
< α0 ≤ 1, [Nα0 ] ≥ T − τ, N 1

2
−α0 = o(1).

Under these three cases, we can provide some choices for (N, T ) as follows:

(d) 0 < α0 <
1
2
, [Nα0 ] < T − τ ; T = τ + [N2−3α0 log(N)];

(f) 1
2
< α0 ≤ 1, [Nα0 ] < T − τ, T = τ + [Nα0 log(N)];

(g) 1
2
< α0 ≤ 1, [Nα0 ] ≥ T − τ, T = τ + [Nα0/ log(N)].

When τ → ∞, the term µ
′
vΣτµv will tend to 0, because of Στ → 0. So, as τ is very large,

the value of ln(µ
′
vΣτµv) may be negative in practice. Hence Theorem 2 provides an alternative
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form for the asymptotic distribution of N α̂−α0 instead of α̂ − α0, and the case of τ being fixed

is discussed in Theorem 3.

We now evaluate the finite–sample performance of the proposed estimation methods and the

resulting theory in Sections 4 and 5 below.

4 Simulation

4.1 Data Generating Process 1

First, we consider the following two-factor static model

xit = µ+ βi1f1t + βi2f2t + uit, i = 1, 2, . . . , N ; t = 1, 2, . . . , T. (4.1)

The factors are generated by

fjt = ρjfj,t−1 +
√

1− ρ2
j ζjt, j = 1, 2; t = −49,−48, . . . , 0, 1, . . . , T, (4.2)

with fj,−50 = 0 for j = 1, 2 and ζjt
i.i.d∼ N (0, 1). The idiosyncratic components are generated by

uit = εt ηi for i = 1, 2, · · · , N and t = 1, 2, . . . , T , (4.3)

in which ηi
i.i.d∼ N(0, 1),

εt = ρ2εt−1 + εt, t = 1, 2, . . . , T (4.4)

and εt
i.i.d∼ N(0, 1), and {εt : t = 1, 2, . . . , T} are independent of {ζjt : t = 1, 2, . . . , T ; j = 1, 2}.

The factor loadings are generated as

βir = vir, for i = 1, 2, . . . ,M ; r = 1, 2;

βir = ρi−M , for i = M + 1,M + 2, . . . , N ; r = 1, 2, (4.5)

where vir
i.i.d∼ U(0.5, 1.5), M = [Nα0 ] and ρ = 0.5. Moreover, we set µ = 1 and ρj = 0.5 for

j = 1, 2.

4.2 Data Generating Process 2

Second, we consider a dynamic model as follows.

xit = µ+ βi,01f1t + βi,02f2t + βi,11f1,t−1 + βi,12f2,t−1 + uit, i = 1, . . . , N ; t = 1, . . . , T, (4.6)

where µ = 1, and the factor loadings are generated as

βi,jk = vi,jk, for i = 1, 2, . . . ,Mk;

βi,jk = ρi−Mk , for i = Mk + 1,Mk + 2, . . . , N,
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for j = 0, 1, k = 1, 2, Mk = [Nα0 ] and ρ = 0.5, in which vi,jk
i.i.d∼ U(0.5, 1.5).

The generating procedures for ft and uit are the same as those in Data Generating Process

1. The factor loadings are generated as (4.5) in the first static model.

For the two data generating processes, we consider values of α0 = 0.2, 0.4, 0.6, 0.8, 1, N =

100, 200, 500, 1000 and T = 100, 200, 500. All the experiments are based on 500 replications. For

each replication, the values of α, ρ1, ρ2 are given as above. These parameters are fixed across all

replications. The values of vji, j = 1, 2 are drawn randomly for each replication.

The bias and root mean square error (RMSE) results for the marginal estimator α̂ and joint

estimator α̃ are summarized in Tables 1-4, and show that the proposed estimation methods work

well numerically.

5 Empirical applications

In this section, we show how to obtain an estimate for the exponent of cross–sectional depen-

dence, α0, for each of the following panel data sets: quarterly cross-country data used in global

modelling and daily stock returns on the constitutes of Standard and Poor 500 index.

5.1 Cross-country dependence of macro-variables

We provide an estimate for α0 for each of the datasets: Real GDP growth (RGDP), Consumer

price index (CPI), Nominal equity price index (NOMEQ), Exchange rate of country i at time t

expressed in US dollars (FXdol), Nominal price of oil in US dollars (POILdolL), and Nominal

short-term and long-term interest rate per annum (Rshort and Rlong) computed over 33 coun-

tries.∗ The observed cross-country time series, yit, over the full sample period, are standardized

as xit = (yit− ȳi)/si, where ȳi is the sample mean and si is the corresponding standard deviation

for each of the time series. Table 5 reports the corresponding results.

For the standardized data xit, we regress it on the cross-section mean x̄t = 1
N

∑N
i=1 xit, i.e.,

xit = δix̄t + uit for i = 1, 2, . . . , N , where δi, i = 1, 2, . . . , N , are regression coefficients. With

the availability of the OLS estimate δ̂i for δi, we have the estimated versions, ûit, of the form:

ûit = xit − δ̂ix̄t.
Since our proposed estimation methods rely on the different extent of serial dependence of

the factors and idiosyncratic components, we provide some autocorrelation graphs of {x̄t =
1
N

∑N
i=1 xit : t = 1, 2, . . . , T} and {ūt = 1

N

∑N
i=1 uit : t = 1, 2, . . . , T} for each group of the real

dataset under investigation (see Figures 1–4). From these graphs, it is easy to see that CPI,

NOMEQ, FXdol and POILdolL have distinctive serial dependence in the factor part x̄t and

idiosyncratic part ūt. All the observed real data xit are serially dependent.

Figures 1-4 near here

∗The datasets are downloaded from http://www-cfap.jbs.cam.ac.uk/research/gvartoolbox/download.html.
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Due to existence of serial dependence in the idiosyncratic components, we use the proposed

second moment criterion. The marginal estimator α̂ and the joint estimator α̃ for these real

data are provided in Table 5. We use τ = 10 for two estimators. We can see from Table 5 that

the values of α̂ and α̃ are different from the those provided by Bailey, Kapatanios and Pesaran

(2015). Some estimated values are not 1. This phenomenon implies that a factor structure

might be a good approximation for modeling global dependencies, and the value of α0 = 1

typically assumed in the empirical factor literature might be exaggerating the importance of

the common factors for modelling cross-sectional dependence at the expense of other forms of

dependencies that originate from trade or financial inter-linkage that are more local or regional

rather than global in nature. Furthermore, note that our model is different from that given by

Bailey, Kapatanios and Pesaran (2015) (BKP15) and difference mainly lies on that our model

only imposes serial dependence on factor processes and assumes that the idiosyncratic errors are

independent. Different models may bring in different exponents.

Table 5 near here

5.2 Cross-sectional exponent of stock-returns

One of the important considerations in the analysis of financial markets is the extent to which

asset returns are interconnected. The classical model is the capital asset pricing model of Sharp

(1964) and the arbitrage pricing theory of Ross (1976). Both theories have factor representations

with at least one strong common factor and an idiosyncratic component that could be weakly

cross-sectional correlated (see Chamberlain (1983)). The strength of the factors in these asset

pricing models is measured by the exponent of the cross-sectional dependence, α0. When α0 = 1,

as it is typically assumed in the literature, all individual stock returns are significantly affected by

the factors, but there is no reason to believe that this will be the case for all assets and at all times.

The disconnection between some asset returns and the market factors could occur particularly

at times of stock market booms and busts where some asset returns could be driven by some

non-fundamentals. Therefore, it would be of interest to investigate possible time variations in

the exponent α0 for stock returns.

We base our empirical analysis on daily returns of 96 stocks in the Standard & Poor 500

(S&P500) market during the period of January, 2011-December, 2012. The observations rit

are standardized as xit = (rit − r̄i)/si, where r̄i is the sample mean of the returns over all

the sample and si is the corresponding standard deviations. For the standardized data xit, we

regress it on the cross-section mean x̄t = 1
N

∑N
i=1 xit, i.e., xit = δix̄t + uit for i = 1, 2, . . . , N ,

where δi, i = 1, 2, . . . , N , are the regression coefficients. Based on the OLS estimates: δ̂i for δi,

we define ûit = xit − δ̂ix̄t. The autocorrelation functions (ACFs) of the cross-sectional averages

x̄t = 1
N

∑N
i=1 xit and ūt = 1

N

∑N
i=1 uit are presented in Figure 5.

Figure 5 near here
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From Figure 5, we can see that the serial dependences of the common factor components

are stronger than those of the idiosyncratic components. We use the estimates α̂ and α̃ to

characterize the serial dependences of the common factors and the idiosyncratic components.

The estimates α̂ and α̃ are calculated with the choice of τ = 10. Table 6 reports the estimates

with several different sample sizes. As comparison, the estimates from BKP15 are also reported.

From the table, we can see that their estimation method does not work when α is smaller than

1/2. The results also show that the cross-sectional exponent of stock returns in S&P500 are

smaller than 1. This indicates the support of using different levels of loadings for the common

factor model as assumed in Assumption 2, rather than using the same level of loadings in such

scenarios. .

Table 6 near here

Furthermore, Figure 6 provides the marginal estimate α̂ and the joint estimate α̃ for the first

130 days of all the period. It shows that the estimated values for α0 with the two methods are

quite similar. On the other hand, since a 130-day period is short, meanwhile, it is reasonable

that the estimates didn’t change very much.

Figure 6 near here

6 Conclusions and discussion

In this paper, we have examined the issue of how to estimate the extent of cross-sectional depen-

dence for large dimensional panel data. The extent of cross-sectional dependence is parameter-

ized as α0, by assuming that only [Nα0 ] sections are relatively strongly dependent. Compared to

the estimation method proposed by BKP15, we have proposed using a dynamic factor model to

characterize the extent of inter-connections in large panel data and developed a new ‘moment’

method to estimate α0. In detail, based on the assumption that stronger serial dependence exists

in the factor process than that for the idiosyncratic errors, we have recommended the use of the

covariance function between the cross-sectional average values of the observed data at different

lags to estimate α0. One main advantage of this new approach is that it can deal with the case

of 0 ≤ α0 ≤ 1/2.

Due to some unknown parameters involved in the panel data model, in addition to the

proposed marginal estimator, we have also construct a joint estimation method for α0 and the

related unknown parameters. The asymptotic properties of all the estimators have all been

established. The simulation results and an empirical application to two datasets have shown

that our estimation methods work well numerically.

Future research includes discussions about how to estimate factors and factor loadings in

factor models, and determine the number of factors for the case of 0 < α0 < 1. Existing
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methods available for factor models, such as Bai and Ng (2002), Bai (2003), Onatski (2009), for

the case of α0 = 1, may not be applicable, and should be extended to deal with the case of

0 < α0 < 1. Such issues are all left for future work.
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Figure 1: ACF of RGDP and CPI
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Figure 2: ACF of NOMEQ and FXdol

Figure 3: ACF of Rshort and Rlong

This material includes three appendices, i.e. Appendices A–C. Appendix A presents justification of

Assumptions 1–3 in the main paper. Appendix B provides the proofs of Theorems 1 and 2 in the main

paper. Some lemmas used in the proofs of Theorems 1 and 2 are given in Appendix C. The proof of

Theorem 3 in the main paper is omitted since it is similar to that of Theorem 2.

Throughout this material, we use C to denote a constant which may be different from line to line

and || · || to denote the spectral norm or the Euclidean norm of a vector. In addition, the notation

an � bn means that an = OP (bn) and bn = OP (an).

8 Appendix A: Justifications of Assumptions

In this section, we provide some comments on Assumptions 1–3 in the main paper. The three assump-

tions are mild and can be satisfied in many cases. Next, we will discuss them in detail.

1. Justification of Assumption 1: The weak stationarity assumption on the idiosyncratic compo-

nents {ut : t = 1, 2, . . . , T} is a commonly used condition in time series analysis. Rather than

independence assumption, weak cross-sectional correlation and serial correlation are imposed via

γ2(|i− j|) and γ1(τ), respectively. The levels of weakness are described by (2.6) and (2.8). Note
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Figure 4: ACF of POILdolL

Figure 5: ACF of averages of 96 stock returns

that when {uit} is independent across (i, t), we have γ1(τ) = 0 and γ2(|i− j|) = 0 which satisfy

Conditions (2.6).

2. Justification of Assumption 2: The degree of cross-sectional dependence in {xt : t = 1, 2, . . . , N}
crucially depends on the nature of the factor loadings. This assumption groups the factor loadings

into two categories: a strong category with effects that are bounded away from zero, and a weak

category with transitory effects that tend to zero. From this point, the first [Nα0 ] sections are

dependent while the rest are independent. Here α0 = max(α`k : ` = 0, 1, 2, . . . , s; k = 1, 2, . . . ,m).

To simplify the proof of Theorem 2, we require the factor loadings to have the finite sixth

moments. However, we believe that the finite second moment condition may just be sufficient by

performing the truncation technique in the proof of Lemma 3.

3. Justification of Assumption 3: The common factors {ft : t = 1, 2, . . . , T} are also weak stationary

time series. The important condition (2.9), which connects {ft : t = 1, 2, . . . , T} and {uit : i =

1, 2, . . . , N ; t = 1, 2, . . . , T}, requires stronger serial dependence existed in the factors than that

in the idiosyncratic components. This requirement assures the leading term position for the

common factor part rather than the idiosyncratic part.
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Figure 6: 130-day joint and marginal estimators for 96 stocks of S&P 500

9 Appendix B: Proofs of Theorems 1 and 2

This section provides the proofs of Theorems 1 and 2. The proofs will use Lemmas 1 and 2, which are

given Appendix C below. For easy of presentation, we first prove Theorem 2 which is for the marginal

estimator.

9.1 Proof of Theorem 2

Proof. Based on model (2.2) in the main paper, we have

x̄t =
1

N

N∑
i=1

xit = µ+ β̄
′
NFt + ūt,

where β̄
′
N = 1/N

∑N
i=1 βi, µ = 1/N

∑N
i=1 µi and ūt = 1

N

∑N
i=1 uit. Then we have

x̄(1) =
1

T − τ

T−τ∑
t=1

x̄t = µ+ β̄
′
N F̄T + ū(1), x̄(2) =

1

T − τ

T−τ∑
t=1

x̄t+τ = µ+ β̄
′
N F̄T+τ + ū(2),

where F̄T = 1
T−τ

∑T−τ
t=1 Ft, F̄T+τ = 1

T−τ
∑T−τ

t=1 Ft+τ , ū(1) = 1
T−τ

∑T−τ
t=1 ūt and ū(2) = 1

T−τ
∑T−τ

t=1 ūt+τ .

Then the auto-covariance estimator σ̂N (τ) can be written as

σ̂N (τ) =
1

T − τ

T−τ∑
t=1

((
β̄
′
N (Ft − F̄T ) + ūt − ū(1)

)(
β̄
′
N (Ft+τ − F̄T+τ ) + ūt+τ − ū(2)

))
=

1

T − τ

T−τ∑
t=1

(
β̄
′
N (Ft − F̄T )(Ft+τ − F̄T+τ )

′
β̄N

)
+ CN , (B.1)

where CN = cN1 + cN2 + cN3 with

cN1 =
1

T − τ

T−τ∑
t=1

(
(ūt − ū(1))(ūt+τ − ū(2))

)
,

cN2 =
1

T − τ

T−τ∑
t=1

(
β̄
′
N (Ft − F̄T )(ūt+τ − ū(2))

)
,

cN3 =
1

T − τ

T−τ∑
t=1

(
β̄
′
N (Ft+τ − F̄T+τ )(ūt − ū(1))

)
.
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Table 1: DGP1: Bias and RMSE for the marginal estimator α̂ with τ =
[
T 1/4

]
.

α0 0.2 0.4 0.6 0.8 1

N/T 100

100 Bias -0.0565 -0.0159 -0.0197 -0.0102 -0.0085

RMSE 0.1480 0.0618 0.0473 0.0362 0.0388

200 Bias -0.0410 -0.0116 -0.0078 -0.0121 -0.0104

RMSE 0.1175 0.0482 0.0362 0.0349 0.0359

500 Bias -0.0029 -0.0104 -0.0110 -0.0089 -0.0098

RMSE 0.0988 0.0448 0.0323 0.0318 0.0301

1000 Bias -0.0249 -0.0175 -0.0079 -0.0084 -0.0098

RMSE 0.0802 0.0501 0.0268 0.0265 0.0267

N/T 200

100 Bias -0.0371 -0.0030 -0.0104 -0.0069 -0.0077

RMSE 0.1001 0.0362 0.0294 0.0276 0.0277

200 Bias -0.0480 -0.0037 -0.0041 -0.0063 -0.0053

RMSE 0.1160 0.0319 0.0251 0.0236 0.0220

500 Bias -0.0126 -0.0053 -0.0026 -0.0039 -0.0042

RMSE 0.0888 0.0290 0.0192 0.0182 0.0195

1000 Bias 0.0045 -0.0114 -0.0027 -0.0040 -0.0035

RMSE 0.0816 0.0323 0.0178 0.0175 0.0171

N/T 500

100 Bias -0.0115 0.0032 -0.0066 -0.0037 -0.0026

RMSE 0.0580 0.0219 0.0192 0.0167 0.0165

200 Bias -0.0534 0.0645 0.0016 -0.0023 -0.0021

RMSE 0.0102 0.0210 0.0150 0.0137 0.0144

500 Bias -0.0198 0.0035 -0.0039 -0.0017 -0.0008

RMSE 0.0886 0.0177 0.0131 0.0127 0.0123

1000 Bias -0.0226 -0.0065 -0.0009 -0.0015 -0.0017

RMSE 0.0825 0.0175 0.0109 0.0109 0.0112

Denote

Sτ =
1

T − τ

T−τ∑
t=1

(Ft − F̄T )(Ft+τ − F̄T+τ )
′
.

From (3.10) in the main paper, we can obtain

β̄
′
NSτ β̄N = [N2α0−2]v̄

′
NSτ v̄N +RN , (B.2)

where

RN = [Nα0−2]v̄
′
NSτKρ + [Nα0−2]K

′
ρSτ v̄N +N−2K

′
ρSτKρ. (B.3)

Here we would like to remind the reader that DN becomes an identity matrix since we assume that
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Table 2: DGP1: Bias and RMSE for the joint estimator α̃ with τ =
[
T 1/4

]
.

α0 0.2 0.4 0.6 0.8 1

N/T 100

100 Bias -0.0826 -0.0627 -0.0473 -0.0267 -0.0181

RMSE 0.0788 0.0428 0.0276 0.0220 0.0118

200 Bias -0.0327 -0.0253 -0.0138 -0.0114 -0.0108

RMSE 0.0482 0.0279 0.0152 0.0138 0.0109

500 Bias -0.0126 -0.0114 -0.0105 -0.0107 -0.0102

RMSE 0.0153 0.0128 0.0110 0.0108 0.0105

1000 Bias -0.0112 -0.0113 -0.0100 -0.0106 -0.0098

RMSE 0.0143 0.0114 0.0109 0.0107 0.0110

N/T 200

100 Bias -0.0462 -0.0323 -0.0217 -0.0112 -0.0099

RMSE 0.0501 0.0228 0.0184 0.0117 0.0112

200 Bias -0.0152 -0.0116 -0.0108 -0.0100 -0.0094

RMSE 0.0368 0.0282 0.0189 0.0168 0.0119

500 Bias -0.0135 -0.0101 -0.0077 -0.0063 -0.0076

RMSE 0.0288 0.0178 0.0124 0.0124 0.0111

1000 Bias -0.0129 -0.0105 -0.0059 -0.0054 -0.0060

RMSE 0.0106 0.0112 0.0117 0.0109 0.0111

N/T 500

100 Bias -0.0127 -0.0119 -0.0109 -0.0098 -0.0069

RMSE 0.0315 0.0218 0.0124 0.0117 0.0112

200 Bias -0.0110 -0.0099 -0.0085 -0.0071 -0.0064

RMSE 0.0211 0.0108 0.0108 0.0102 0.0102

500 Bias -0.0079 -0.0074 -0.0080 -0.0069 -0.0045

RMSE 0.0110 0.0118 0.0114 0.0110 0.0105

1000 Bias -0.0066 -0.0060 -0.0070 -0.0085 -0.0068

RMSE 0.0100 0.0112 0.0110 0.0102 0.0110

αlk = α0 for simplicity. Therefore, from (B.1) and (B.2), we have

ln(σ̂N (τ))2 = ln(β̄
′
NSτ β̄N )2 + ln(1 +

CN

β̄
′
NSτ β̄N

)2

= 4(α0 − 1) ln(N) + ln(v̄
′
NSτ v̄N )2

+ ln
(

1 +
RN

[N2α0−2]v̄
′
NSτ v̄N

)2
+ ln

(
1 +

CN

β̄
′
NSτ β̄N

)2
. (B.4)

It follows from (3.16) in the main paper and (B.4) that

4(α̂− α0) ln(N) + ln(κ2
0)− ln(v̄

′
NSτ v̄N )2

= ln

(
1 +

RN

[N2α0−2]v̄
′
NSτ v̄N

)2

+ ln

(
1 +

CN

β̄
′
NSτ β̄N

)2

. (B.5)

From Lemma 1 in Appendix C, which provides the central limit theorem for v̄
′
NSτ v̄N , and condition

(3.24) in the main paper, we conclude that, as N,T →∞,

v̄
′
NSτ v̄N − µ

′
vΣτµv

i.p.−→ 0. (B.6)
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Table 3: DGP2: Bias and RMSE for the marginal estimator α̂ with τ =
[
T 1/4

]
.

α0 0.2 0.4 0.6 0.8 1

N/T 100

100 Bias -0.0937 0.0532 -0.0423 -0.0240 -0.0163

RMSE 0.0879 0.1034 0.0676 0.0499 0.0396

200 Bias -0.0453 -0.0184 -0.0109 -0.0110 -0.0097

RMSE 0.0793 0.0642 0.0552 0.0399 0.0239

500 Bias -0.0106 -0.0112 -0.0095 -0.0069 -0.0058

RMSE 0.0423 0.0329 0.0310 0.0208 0.0119

1000 Bias -0.0152 -0.0103 -0.0099 -0.0102 -0.0098

RMSE 0.0293 0.0199 0.0183 0.0175 0.0148

N/T 200

100 Bias -0.0675 -0.0405 -0.0296 -0.0193 -0.0184

RMSE 0.0756 0.0581 0.0329 0.0195 0.0167

200 Bias -0.0309 -0.0224 -0.0108 -0.0091 -0.0064

RMSE 0.0475 0.0271 0.0169 0.0145 0.0139

500 Bias 0.0089 -0.0100 -0.0097 -0.0104 -0.0096

RMSE 0.0288 0.0146 0.0127 0.0108 0.0106

1000 Bias -0.0198 -0.0068 -0.0059 -0.0064 -0.0049

RMSE 0.0162 0.0131 0.0108 0.0106 0.0100

N/T 500

100 Bias 0.0400 -0.0232 -0.0147 -0.0121 -0.0106

RMSE 0.0489 0.0312 0.0276 0.0260 0.0188

200 Bias -0.0232 -0.0201 -0.0159 -0.0108 -0.0059

RMSE 0.0266 0.0198 0.0120 0.0106 0.0110

500 Bias -0.0124 0.0105 -0.0089 -0.0075 -0.0037

RMSE 0.0146 0.0138 0.0103 0.0107 0.0111

1000 Bias -0.0107 -0.0100 -0.0067 -0.0058 -0.0047

RMSE 0.0109 0.0110 0.0112 0.0099 0.0101

Evidently, ‖Kρ‖ ≤ C. Moreover, by Assumption 2,

E(||v̄N ||2) = E

(
s∑
`=0

m∑
k=1

v̄2
N`k

)
= E

 s∑
`=0

m∑
k=1

1

[Nα0 ]

[Nα0 ]∑
i,j=1

vi`kvj`k

 ≤ C (B.7)

and by Assumption 3, we have

E||Sτ || ≤
1

T − τ

T−τ∑
t=1

E||FtF
′
t+τ || =

1

T − τ

T−τ∑
t=1

E(

s∑
j=0

f
′
t+τ−jft−j) ≤ C.

So ||v̄N || = OP (1) and ||Sτ || = OP (1). These derivations, together with (B.3), ensure

RN = OP ([Nα0−2]). (B.8)

We conclude from (B.8) and (B.6) that

RN

[N2α0−2]v̄
′
NSτ v̄N

= OP

( 1

[Nα0 ]µ′vΣτµv

)
. (B.9)
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Table 4: DGP2: Bias and RMSE for the joint estimator α̃ with τ =
[
T 1/4

]
.

α0 0.2 0.4 0.6 0.8 1

N/T 100

100 Bias -0.1001 -0.0959 -0.0692 -0.0701 -0.0439

RMSE 0.0226 0.0208 0.0199 0.0200 0.0180

200 Bias -0.0791 -0.0688 -0.0472 -0.0421 -0.0309

RMSE 0.0182 0.0178 0.0162 0.0158 0.0149

500 Bias -0.0671 -0.0491 -0.0412 -0.0286 -0.0287

RMSE 0.0179 0.0179 0.0164 0.0152 0.0150

1000 Bias -0.0629 -0.0328 -0.0231 -0.0206 -0.0183

RMSE 0.0165 0.0162 0.0159 0.0143 0.0129

N/T 200

100 Bias -0.0937 -0.0927 -0.0652 -0.0539 -0.0490

RMSE 0.0196 0.0199 0.0157 0.0159 0.0156

200 Bias -0.0677 -0.0603 -0.0512 -0.0327 -0.0219

RMSE 0.0172 0.0169 0.0150 0.0138 0.0128

500 Bias -0.0419 -0.0395 -0.0263 -0.0199 -0.0201

RMSE 0.0159 0.0142 0.0147 0.0137 0.0129

1000 Bias -0.0317 -0.0285 -0.0279 -0.0201 -0.0187

RMSE 0.0126 0.0118 0.0116 0.0109 0.0111

N/T 500

100 Bias -0.0550 -0.0452 -0.0373 -0.0296 -0.0210

RMSE 0.0174 0.0167 0.0149 0.0152 0.0139

200 Bias -0.0327 -0.0279 -0.0194 -0.0172 -0.0166

RMSE 0.0138 0.0128 0.0131 0.0121 0.0119

500 Bias -0.0199 -0.0179 -0.0166 -0.0142 -0.0117

RMSE 0.0125 0.0124 0.0120 0.0119 0.0122

1000 Bias -0.0197 -0.0173 -0.0137 -0.0118 -0.0113

RMSE 0.0117 0.0119 0.0109 0.0103 0.0101

Therefore

ln
(

1 +
RN

[N2α0−2]v̄
′
NSτ v̄N

)2
= rNT + oP (rNT ) = OP

( 1

[Nα0 ]µ′vΣτµv

)
, (B.10)

where rNT = 2RN
[N2α0−2]v̄

′
NSτ v̄N

+
(

RN
[N2α0−2]v̄

′
NSτ v̄N

)2
, and we have used the simple fact that

lim
x→0

ln(1 + x)− x
x

= 0. (B.11)

It follows that√
min

(
[Nα0 ], T − τ

)
ln
(

1 +
RN

[N2α0−2]v̄
′
NSτ v̄N

)2
= OP

( 1

[Nα0/2]µ′vΣτµv

)
= oP (1). (B.12)

Meanwhile, based on the decomposition of CN =
∑3

i=1 cNi, we evaluate the orders of the following

terms: cNi
β̄
′
NSτ β̄N

for i = 1, 2, 3.
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Table 5: Exponent of cross-country dependence of macro-variables

N T α̂ α̃ BKP15

Real GDP growth(RGDP) 33 122 0.899 0.912 0.754

Consumer Price Index(CPI) 33 123 0.913 0.922 0.851

Nominal equity price index(NOMEQ) 33 122 0.942 0.958 0.881

Short-term interest rates(Rshort) 33 122 0.981 0.947 0.907

Long-term interest rates(Rlong) 33 122 0.928 0.919 0.968

* BKP15 is the estimator defined in (11) of Bailey, Kapatanios and Pesaran (2015).

Table 6: Exponent of cross-sectional exponent of stock returns

(N,T) (20,60) (50,80) (70,100) (90,110) (96,125) (96,100) (96,80) (96,60)

α̂ 0.469 0.799 0.809 0.813 0.822 0.843 0.812 0.833

α̃ 0.502 0.708 0.901 0.869 0.842 0.863 0.823 0.846

BKP15 1.002 0.639 0.793 0.842 0.882 0.901 0.898 0.859

*BKP15 is the estimator defined in (11) of Bailey, Kapatanios and Pesaran (2015).

For cN1, we need to evaluate the orders of ū(i), i = 1, 2 and 1
T−τ

∑T−τ
t=1 ūtūt+τ . The order of

1
T−τ

∑T−τ
t=1 ūtūt+τ will be provided in Lemma 2 in Appendix C.

By Assumption 1, we have

E
( N∑
i1,i2=1

T−τ∑
t1,t2=1

ui1t1ui2t2

)

= E

N∑
i1,i2=1

T−τ∑
t1,t2=1

( +∞∑
j1=0

φi1j1

+∞∑
s1=−∞

ξj1s1νj1,t1−s1

)( +∞∑
j2=0

φi2j2

+∞∑
s2=−∞

ξj2s2νj2,t2−s2

)

= E
N∑

i1,i2=1

T−τ∑
t1,t2=1

+∞∑
j1=0

φi1j1

+∞∑
s1=−∞

ξj1s1ν
2
j1,t1−s1φi2j1ξj1,t1−s1−t2

=
N∑

i1,i2=1

T−τ∑
t1,t2=1

+∞∑
j1=0

+∞∑
s1=−∞

φi1j1φi2j1ξj1s1ξj1,t1−s1−t2

≤
T−τ∑
t1=1

N∑
i1=1

+∞∑
j1=0

|φi1j1 |
N∑
i2=1

|φi2j1 |
+∞∑

s1=−∞
|ξj1s1 |

T∑
t2=1

|ξj1,t1−s1−t2 | = O
(
N(T − τ)

)
. (B.13)
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From (B.13) and the fact that E(ū(1)) = 0, we have

V ar(ū(1)) =
1

N2(T − τ)2
E
( N∑
i1,i2=1

T−τ∑
t1,t2=1

ui1t1ui2t2

)
= O

( 1

N(T − τ)

)
(B.14)

and then it follows that

ū(1) = OP (
1√

N(T − τ)
). (B.15)

Similarly, we have ū(2) = OP

(
1√

N(T−τ)

)
. Combining (B.15) and Lemma 2 in Appendix D, we get

cN1 = OP

(
max

(
γ1(τ)

N
,

1

N
√
T − τ

))
. (B.16)

This, together with (B.6), (B.2) and (B.8), implies that

cN1

β̄
′
NSτ β̄N

= OP

(
max

(
γ1(τ)N1−2α0

µ′vΣτµv
,
(T − τ)−1/2N1−2α0

µ′vΣτµv

))
. (B.17)

We then prove

cN2

β̄
′
NSτ β̄N

= OP

((T − τ)−1/2N1/2−α0

µ′vΣτµv

)
. (B.18)

By Assumption 3, we have E[cN2] = 0 and then its variance

V ar
[ 1

T − τ

T−τ∑
t=1

(
β̄
′
N (Ft − F̄T )(ūt+τ − ū(2))

)]
=

1

(T − τ)2

T−τ∑
t1,t2=1

E
(
β̄
′
N (Ft1 − F̄T )β̄

′
N (Ft2 − F̄T )

)
E
(

(ūt1+τ − ū(2))(ūt2+τ − ū(2))
)

= O
( [N2α0−2]

N(T − τ)

)
,

where the last equality uses (B.13) and the fact that via (3.10) in the main paper and (B.7):

E
(
β̄
′
N (Ft − F̄T )

)2
≤
[
[N2α0−2]E

(
||v̄N ||2

)
+ n−2‖Kρ‖

]
E
(
||Ft − F̄T ||2

)
= O([N2α0−2]).

Hence

1

T − τ

T−τ∑
t=1

(
β̄
′
N (Ft − F̄T )(ūt+τ − ū)

)
= OP

( [Nα0−1]

(T − τ)1/2N1/2

)
. (B.19)

In view of this, (B.6), (B.2) and (B.8), we can obtain (B.18). Similarly, one may obtain

cN3

β̄
′
NSτ β̄N

= OP

((T − τ)−1/2N1/2−α0

µ′vΣτµv

)
. (B.20)

By (B.17), (B.18), (B.20) and condition (3.23) in the main paper, we have√
min

(
[Nα0 ], (T − τ)

) cNi

β̄
′
NSτ β̄N

= oP (1), i = 1, 2, 3. (B.21)
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Applying (B.21) and (B.11), we obtain√
min

(
[Nα0 ], (T − τ)

)
ln
(

1 +
CN

β̄
′
NSτ β̄N

)2

=
√

min
(
[Nα0 ], (T − τ)

)(
cNT + oP (cNT )

)
= oP (1), (B.22)

where cNT = 2CN
β̄
′
NSτ β̄N

+
(

CN
β̄
′
NSτ β̄N

)2
.

By (B.5), we have

κ2N4(α̂−α0) = (v̄
′
NSτ v̄N )2

(
1 +

RN

[N2α0−2]v̄
′
NSτ v̄N

)2(
1 +

CN

β̄
′
NSτ β̄N

)2
. (B.23)

From (B.23), it follows that

κ2
0N

4(α̂−α0) − (µ
′
vΣτµv)

2

v̄
′
NSτ v̄N + µ′vΣτµv

=
(
v̄
′
NSτ v̄N − µ

′
vΣτµv

)(
1 +

RN

[N2α0−2]v̄
′
NSτ v̄N

)2(
1 +

CN

β̄
′
NSτ β̄N

)2

+
(µ
′
vΣτµv)

2

v̄
′
NSτ v̄N + µ′vΣτµv

[(
1 +

RN

[N2α0−2]v̄
′
NSτ v̄N

)2(
1 +

CN

β̄
′
NSτ β̄N

)2
− 1
]
. (B.24)

With (B.24), (B.22), (B.10) and Lemma 1 in Appendix C, we obtain

√
min([Nα0 ], T − τ)

κ2
0N

4(α̂−α0) − (µ
′
vΣτµv)

2

v̄
′
NSτ v̄N + µ′vΣτµv

→ N (0, σ2
0), (B.25)

where σ2
0 = limN,T→∞

min([Nα0 ],T−τ)
[Nα0 ] 4µ

′
vΣτΣvΣτµv + limN,T→∞

min([Nα0 ],T−τ)
T−τ (µ

′
v ⊗ µ

′
v)Ω(µv ⊗ µv).

9.2 Proof of Theorem 1

Proof. Recall that

α̃ = arg max
α

Q̂
(1)
NT (α), where Q̂

(1)
NT (α) =

(
q̂

(1)
1 (α) + [Nα]q̂

(1)
2 (α)

)2
N (1)(α)

,

and

q̂
(1)
1 (α) =

[Nα]∑
n=1

n3σ̂n(τ), q̂
(1)
2 (α) =

N∑
n=[Nα]+1

nσ̂n(τ), N (1)(α) =

[Nα]∑
n=1

n3 +

N∑
n=[Nα]+1

[N4α]

n

with

σ̂n(τ) =
1

T − τ

T−τ∑
t=1

(x̄nt − x̄(1)
n )(x̄n,t+τ − x̄(2)

n ). (B.26)

Similarly, it is easy to see that the true value α0 satisfies α0 = arg maxαQ
(1)
N (α), where Q

(1)
N (α) =(

q
(1)
1 (α)+[Nα]q

(1)
2 (α)

)2
N(1)(α)

, and q
(1)
1 (α) and q

(1)
2 (α) are respectively obtained from q̂

(1)
1 (α) and q̂

(1)
2 (α) with

σ̂n(τ) replaced by

σn(τ) = cov(x̄nt, x̄n,t+τ ). (B.27)
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It follows that∣∣∣Q̂(1)
NT (α)− Q̂(1)

NT (α0)
∣∣∣ =

∣∣∣Q̂(1)
NT (α)−Q(1)

N (α)− [Q̂
(1)
NT (α0)−Q(1)

N (α0)] +Q
(1)
N (α)−Q(1)

N (α0)
∣∣∣

≤ 2 max
α

∣∣Q̂(1)
NT (α)−Q(1)

N (α)
∣∣+
∣∣∣Q(1)

N (α)−Q(1)
N (α0)

∣∣∣ . (B.28)

We next evaluate the two terms on the right hand of (B.28). Consider the first term on the right

hand of (B.28). Rewrite it as

N (1)(α)
(
Q̂

(1)
NT (α)−Q(1)

N (α)
)

=
(
q̂

(1)
1 (α)− q(1)

1 (α) + [Nα]
(
q̂

(1)
2 (α)− q(1)

2 (α)
))
·
(
q̂

(1)
1 (α) + q

(1)
1 (α) + [Nα]

(
q̂

(1)
2 (α) + q

(1)
2 (α)

))
.

A direct calculation, together with Lemma 1 in Appendix C, yields

σ̂n(τ)− σn(τ) =
{ v̄

′
nSτ v̄n − κ0 = OP (v

−1/2
nT ), n ≤ [Nα0 ];

[N2α0 ]
n2 (v̄

′
NSτ v̄N − κ0) = OP

( [N2α0 ]
n2 v

−1/2
NT

)
, n > [Nα0 ],

(B.29)

where vnT = min(n, T − τ) for n ≤ [Nα0 ] and vNT = min([Nα0 ], T − τ).

It follows that

q̂
(1)
1 (α)− q(1)

1 (α) =

[Nα]∑
n=1

n3
(
σ̂n(τ)− σn(τ)

)
=

{ OP
(∑[Nα]

n=1 n
3v
−1/2
nT

)
, α ≤ α0;

OP
(∑[Nα0 ]

n=1 n3v
−1/2
nT +

∑[Nα]
n=[Nα0 ]+1 n

3 [N2α0 ]
n2 v

−1/2
NT

)
, α > α0,

=
{ OP

(
[N4α](v

(1)
NT )−1/2

)
, α ≤ α0;

OP
(
[N4α0 ]v

−1/2
NT + [N2α0 ] · |[N2α]− [N2α0 ]|v−1/2

NT

)
, α > α0,

where v
(1)
NT = min([Nα], T − τ). Similarly, we have

[Nα]
(
q̂

(1)
2 (α)− q(1)

2 (α)
)

= [Nα]

N∑
n=[Nα]+1

n
(
σ̂n(τ)− σn(τ)

)

=
{ OP

(
[N2α0+α]v

−1/2
NT − [N3α](v

(1)
NT )−1/2 + [Nα+2α0 ](logN1−α0)v

−1/2
NT

)
, α ≤ α0;

OP

(
[N2α0+α](logN1−α)v

−1/2
NT

)
, α > α0.

It also follows from (3.15) in the main paper and (B.29) that

q̂
(1)
1 (α) + q

(1)
1 (α) =

[Nα]∑
n=1

n3
(
σ̂n(τ) + σn(τ)

)

=
{ OP

(∑[Nα]
n=1 n

3
(
κ0 + v

−1/2
nT

))
, α ≤ α0;

OP

(∑[Nα0 ]
n=1 n3

(
v
−1/2
NT + κ0

)
+
∑[Nα]

n=[Nα0 ]+1 n
3 [N2α0 ]

n2 v
−1/2
NT

)
, α > α0,

=
{ OP

(
[N4α]κ0 + [N4α](v

(1)
NT )−1/2

)
, α ≤ α0;

OP

(
[N4α0 ](κ0 + v

−1/2
NT ) + ([N2α+2α0 ]− [N4α0 ])v

−1/2
NT

)
, α > α0
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and that

[Nα]
(
q̂

(1)
2 (α) + q

(1)
2 (α)

)
= [Nα]

N∑
n=[Nα]+1

n
(
σ̂n(τ) + σn(τ)

)

=
{ OP

(
− [N3α]

(
(v

(1)
NT )−1/2 + κ0

)
+ [Nα+2α0 ]

(
1 + logN1−α0

)(
v
−1/2
NT + κ0

))
, α ≤ α0;

OP

(
[N2α0+α]

(
logN1−α)(v−1/2

NT + κ0

))
, α > α0.

Moreover,

N (1)(α) =

[Nα]∑
n=1

n3 +

N∑
n=[Nα]+1

[N4α]

n
�
(

[N4α] + [N4α] log(
N

[Nα]
)
)
. (B.30)

Summarizing the above derivations implies

Q̂
(1)
NT (α)−Q(1)

N (α) = OP

( [N4α0 ]v
−1/2
NT κ0

logN1−α

)
. (B.31)

Consider the second term on the right hand of (B.28). To this end, write

Q
(1)
N (α)−Q(1)

N (α0) =
1

N (1)(α)
((a1 + a2)(a3 + a4)) +

N (1)(α0)−N (1)(α)

N (1)(α)N (1)(α0)
a2

5, (B.32)

where

a1 = q
(1)
1 (α)− q(1)

1 (α0), a2 = [Nα]
(
q

(1)
2 (α)− q(1)

2 (α0)
)
, a3 = q

(1)
1 (α) + q

(1)
1 (α0),

a4 = [Nα]
(
q

(1)
2 (α) + q

(1)
2 (α0)

)
and a5 = q

(1)
1 (α0) + [Nα0 ]q

(1)
2 (α0).

Straightforward calculations indicate that

a1 = O
(∣∣[N4α0 ]− [N4α]

∣∣κ0

)
, a2 = O

(
[Nα]

∣∣[N2α0 ]− [N2α]
∣∣κ0

)
, a3 = O

(
([N4α0 ] + [N4α])κ0

)
,

a4 = O
(
[Nα+2α0 ](logN1−α)κ0

)
and a5 = O

((
[N4α0 ] + [N3α0 ](logN1−α0)

)
κ0

)
.

It follows from (B.30) that

∣∣∣N (1)(α0)−N (1)(α)

N (1)(α0)N (1)(α)

∣∣∣ �
∣∣∣([N4α0 ]− [N4α])(1 + log N

[Nα])− [N4α0 ] log[Nα0−α]
∣∣∣

([N4α0 ] log[N1−α0 ])([N4α] log[N1−α])

≥M
logN

∣∣∣(1− α)[N4α]− (1− α0)[N4α0 ]
∣∣∣

([N4α0 ] log[N1−α0 ])([N4α] log[N1−α])
,

where and in what follows M stands for some positive constant number which may be different values

from line to line, to save notation. From the above orders we conclude that the second term on the

right hand of (B.32) is the leading term, compared with its first term. In view of this and the fact that

α0 is the maximizer of Q
(1)
N (α), we obtain from (B.32) that

Q
(1)
N (α0)−Q(1)

N (α) ≥ M

∣∣∣N (1)(α0)−N (1)(α)
∣∣∣

N (1)(α)N (1)(α0)
a2

5

≥ M
logN

∣∣∣(1− α)[N4α]− (1− α0)[N4α0 ]
∣∣∣([N4α0 ]κ0

)2

[N4α0 ](log[N1−α0 ])[N4α] log[N1−α]
. (B.33)
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Note that (B.29) holds uniformly in α so that (B.31) is true when α is replaced with α̃. Also (B.33)

holds when α is replaced with α̃. We conclude from (B.28) and the fact that α̃ is the maximizer of

Q̂
(1)
NT (α) that ∣∣∣Q(1)

N (α0)−Q(1)
N (α̃)

∣∣∣ ≤ 2 max
α=α̃,α0

∣∣Q̂(1)
NT (α)−Q(1)

N (α)
∣∣,

which, together with (B.31) and (B.33), yields∣∣(1− α0)− (1− α̃)[N4(α̃−α0)]
∣∣ = OP

(
v
−1/2
NT κ−1

0

)
. (B.34)

We next consider the consistency of κ̃. It is easy to see that

κ̃ =
q̂

(1)
1 (α̃) + [N2α̃]q̂

(1)
2 (α̃)

N (1)(α̃)
and κ0 =

q
(1)
1 (α0) + [N2α0 ]q

(1)
2 (α0)

N (1)(α0)
. (B.35)

It follows that

κ̃− κ0 =
1

N (1)(α̃)
(b1 + b2) +

N (1)(α0)−N (1)(α̃)

N (1)(α̃)N (1)(α0)
b3, (B.36)

where b1 = q̂
(1)
1 (α̃)− q(1)

1 (α0), b2 = [N2α̃]q̂
(1)
2 (α̃)− [N2α0 ]q

(1)
2 (α0) and b3 = q

(1)
1 (α0) + [N2α0 ]q

(1)
2 (α0).

The orders of bi, i = 1, 2, 3 are listed below.

b1 = OP

(
|[N4α0 ]− [N4α̃]|κ0 + [N4α̃]v

−1/2
NT

)
, b3 = OP

(
[N4α0 ]κ0 + [N4α0 ] · (logN1−α0)κ0

)
,

b2 = OP

(
|[N2α̃]− [N2α0 ]| ·

(
v
−1/2
NT + κ0

)
·
(
[N2α̃] + [N2α0 ] logN1−α0

)
+ [N4α0 ](logN1−α0)v

−1/2
NT

)
.

We then conclude from these orders, (B.36) and (B.30) that

κ̃− κ0 = OP (v
−1/2
NT ). (B.37)

The convergence rate of (α̃, κ̃) in Theorem 3 immediately follows. The next aim is to derive an

asymptotic distribution for the joint estimator (α̃, κ̃). In view of (B.34) and (B.37), it is enough to

consider those α and κ within a compact interval D(C):

D(C) =

{
(α, κ) : α = α0 +

1

2

ln(1 + s1κ
−1
0 v

−1/2
NT )

lnN
, κ = κ0 + s2v

−1/2
NT

}
, (B.38)

where |sj | ≤ C, j = 1, 2 with C being some positive constant independent of n. Recall that

Q
(1)
NT (α, κ) =

[Nα]∑
n=1

n3
(
σ̂n(τ)− κ

)2
+

N∑
n=[Nα]+1

n3
(
σ̂n(τ)− [N2α]

n2
κ
)2

and (α̃, κ̃) = arg minα,κQ
(1)
NT (α, κ).

Without loss of generality, we assume that α ≤ α0 below. First, we simplify
(
Q

(1)
NT (α, κ) −

Q
(1)
NT (α0, κ0)

)
. To this end, write

Q
(1)
NT (α, κ)−Q(1)

NT (α0, κ0) =

[Nα]∑
n=1

n3
((
σ̂n(τ)− κ

)2 − (σ̂n(τ)− κ0

)2)

+
N∑

n=[Nα]+1

n3
((
σ̂n(τ)− [N2α]

n2
κ
)2 − (σ̂n(τ)− [N2α]

n2
κ0

)2)
+
( [Nα]∑
n=1

−
[Nα0 ]∑
n=1

)
n3
(
σ̂n(τ)− κ0

)2
+

N∑
n=[Nα]+1

n3
(
σ̂n(τ)− [N2α]

n2
κ0

)2 − N∑
n=[Nα0 ]+1

n3
(
σ̂n(τ)− [N2α0 ]

n2
κ0

)2
=

8∑
j=1

Aj ,
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where

A1 =

[Nα]∑
n=1

2n3σ̂n(τ)(κ0 − κ); A2 =

[Nα]∑
n=1

n3(κ2 − κ2
0); A3 =

N∑
n=[Nα]+1

2[N2α]nσ̂n(τ)(κ0 − κ);

A4 =
N∑

n=[Nα]+1

[N4α]

n
(κ2− κ2

0);A5 =

[Nα0 ]∑
n=[Nα]+1

−n3
(
σ̂n(τ)− κ0

)2
; A6 =

[Nα0 ]∑
n=[Nα]+1

n3
(
σ̂n(τ)− [N2α]

n2
κ0

)2
;

A7 =

N∑
n=[Nα0 ]+1

[N4α]− [N4α0 ]

n
κ2

0; A8 =
N∑

n=[Nα0 ]+1

2nκ0σ̂n(τ)([N2α0 ]− [N2α]).

The orders of Aj , j = 1, · · · , 8, are evaluated below. It follows from (3.15) in the main paper and

(B.29) that

σ̂n(τ) =

 v̄
′
nSτ v̄n +O( 1

n), n < [Nα0 ];

[N2α0 ]
n2 v̄

′
NSτ v̄N +O

(
[Nα0 ]
n2

)
, n ≥ [Nα0 ].

(B.39)

This, together with the fact that α, κ ∈ D(C), implies

A1 = OP ([N4α]κ0|κ0 − κ|), A2 = O([N4α]κ0|κ− κ0|),

A3 = OP ([N2α+2α0 ](logN1−α)κ0|κ− κ0|), A4 = O([N4α](logN)κ0|κ− κ0|),

A5 = OP
(
|[N4α]− [N4α0 ]|v−1

NT

)
, A6 = OP

(
|[N2α0 ]κ0 − [N2α]κ|2 logNα0−α),

A7 = O
(
|[N4α]− [N4α0 ]|(logN)κ2

0

)
, A8 = OP

(
|[N2α0 ]− [N2α]| · [N2α0 ](logN1−α0)κ2

0

)
,

with vNT = min([Nα0 ], T − τ).

From the above orders and (B.38), we see that A3, A4, A7 and A8 are the leading terms. We then

conclude

Q
(1)
NT (α, κ)−Q(1)

NT (α0, κ0) = (A3 +A8) + (A4 +A7) +OP (δ
(1)
NT )

=

N∑
n=[Nα0 ]+1

2nσ̂N (τ)
(
[N2α0 ]κ0 − [N2α]κ

)
+

N∑
n=[Nα0 ]+1

[N4α]κ2 − [N4α0 ]κ2
0

n
+OP (δ

(1)
NT )

=
(

[N2α0 ]κ0 − [N2α]κ
)( N∑

n=[Nα0 ]+1

(
2nσ̂n(τ)− 2[N2α0 ]κ0

n

)
+

N∑
n=[Nα0 ]+1

[N2α0 ]κ0 − [N2α]κ

n

)
+OP (δ

(1)
NT ), (B.40)

where δ
(1)
NT = oP (A3 +A8 +A4 +A7), uniformly on the compact interval D(C).

Moreover, it follows from the second equality in (B.39) that

N∑
n=[Nα0 ]+1

2nσ̂n(τ) = v̄
′
NSτ v̄N

( N∑
n=[Nα0 ]+1

2[N2α0 ]

n

)
+

N∑
n=[Nα0 ]+1

2nO
( [Nα0 ]

n2

)
. (B.41)

Let

gN (s1, s2) = vNT
Q

(1)
NT (α, κ)−Q(1)

NT (α0, κ0)

[N2α0 ]
∑N

n=[Nα0 ]+1
2[N2α0 ]

n

, (B.42)
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where s1 and s2 are defined in (B.38).

By (B.40) and (B.41) we have

gN (s1, s2) = rNT v
1/2
NT

(
v̄
′
NSτ v̄N − κ0

)
+

1

2
r2
NT +OP (vNTd

(1)
NT ), (B.43)

where rNT = v
1/2
NT

[N2α]κ−[N2α0 ]κ0
[N2α0 ]

and d
(1)
NT =

δ
(1)
NT+

∑N
n=[Nα0 ]+1 2n(

[Nα0 ]

n2
)

[N2α0 ]
∑N
n=[Nα0 ]+1

2[N2α0 ]
n

.

With notation ξ = ln(1 + s1κ
−1
0 v

−1/2
NT )/ lnN , we obtain

lnN ξ = ln(1 + s1κ
−1
0 v

−1/2
NT ),

which implies N ξ = 1 + s1κ
−1
0 v

−1/2
NT . This, together with (B.38), ensures

[N2α−2α0 ] = N ξ = 1 + s1κ
−1
0 v

−1/2
NT , κ− κ0 = s2v

−1/2
NT . (B.44)

By (B.44) and the definition of rNT , we have

rNT = v
1/2
NT

[N2α]κ− [N2α]κ0

[N2α0 ]
+ v

1/2
NT

[N2α]κ0 − [N2α0 ]κ0

[N2α0 ]

= v
1/2
NT [N2α−2α0 ](κ− κ0) + v

1/2
NTκ0([N2α−2α0 ]− 1)

= s1 + s2 + s1s2κ
−1
0 v

−1/2
NT . (B.45)

We then conclude from (B.45), (B.43) and Lemma 1 that for any s1, s2 ∈ [−C,C],

gN (s1, s2)
d→ g(s1, s2) = (s1 + s2)Z +

1

2
(s1 + s2)2,

where Z is a normal random variable with mean 0 and variance σ2
0, which is the asymptotic distribution

derived in Lemma 1.

Here we would like to point out that the last term of (B.43) converges to zero in probability

uniformly in s1, s2 ∈ [−C,C], in view of (B.40) and the tightness in s1 and s2 is straightforward due to

the structure of rNT in (B.45).

Let s̃1 and s̃2 be s1 and s2 respectively with (α, κ) replaced by (α̃, κ̃). By the definition of (α̃, κ̃) in

(3.9) of the main paper, we know that gN (s1, s2) takes the minimum value at (s̃1, s̃2). Moreover, from

(B.43) and (B.45) a key observation is that

s̃1 + s̃2 = −v1/2
NT

(
v̄
′
NSτ v̄N − κ0

)
+ op(1) (B.46)

(one can verify this by taking derivative with respective to s1 and s2 in (B.43)). Next, we analyze s̃2.

Recall that s̃2 = v
1/2
NT (κ̃− κ0). By the definition of κ̃ in (3.7) of the main paper, we first provide the

leading term of κ̃. It is easy to see that the leading terms of the numerator and the denominator of κ̃

are [N2α̃]q̂
(1)
2 (α̃) and

∑N
n=[N α̃]+1

[N4α̃]
n respectively.
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Moreover, we have the following evaluations:

[N2α̃]q̂
(1)
2 (α̃)− [N2α0 ]q̂

(1)
2 (α0)

=
(

[N2α̃]− [N2α0 ]
)
q̂

(1)
2 (α̃) + [N2α0 ]

(
q̂

(1)
2 (α̃)− q̂(1)

2 (α0)
)

=
(

[N2α̃]− [N2α0 ]
)
·

N∑
n=[Nα0 ]+1

nσ̂n(τ)

+
(

[N2α̃]− [N2α0 ]
)
·

N∑
n=[Nα0 ]+1

nσ̂n(τ) + [N2α0 ]

[Nα0 ]∑
n=[N α̃]+1

nσ̂n(τ)

=
(

[N2α̃]− [N2α0 ]
)
·

 N∑
n=[Nα0 ]+1

nσ̂n(τ)

 · (1 + oP (1)) (B.47)

and

[N4α̃] ·
N∑

n=[N α̃]+1

1

n
− [N4α0 ] ·

N∑
n=[Nα0 ]+1

1

n

= [N4α̃] ·
[Nα0 ]∑

n=[N α̃]+1

1

n
+
(

[N4α̃]− [N4α0 ]
)
·

N∑
n=[Nα0 ]+1

1

n

=
(

[N4α̃]− [N4α0 ]
)
·
(

ln
N

[Nα0 ]

)
(1 + o(1)) . (B.48)

It follows from (B.47), (B.48) and (B.35) that

κ̃− κ0 =

∑N
n=[Nα0 ]+1 n · [N2α0 ] · (σ̂n(τ)− σn(τ))∑N

n=[Nα0 ]+1
[N4α0 ]
n

(1 + oP (1))

=

(
v̄
′
NSτ v̄N − κ0

)∑N
n=[Nα0 ]+1

[N4α0 ]
n +O

(∑N
n=[Nα0 ]+1

[N3α0 ]
n

)
∑N

n=[Nα0 ]+1
[N4α0 ]
n

(1 + oP (1))

=
(
v̄
′
NSτ v̄N − κ0

)
(1 + oP (1)) , (B.49)

where the second equality uses (B.39).

We then conclude from (B.49) and Lemma 1 that

s̃2 = v
1/2
NT (κ̃− κ0) = v

1/2
NT

(
v̄
′
NSτ v̄N − κ0

)
(1 + oP (1))

d−→ N
(
0, σ2

0

)
. (B.50)

For s̃1, we can get its expression by differencing (B.46) and (B.50) i.e.

s̃1 = −2v
1/2
NT

(
v̄
′
NSτ v̄N − κ0

)
(1 + oP (1))

d−→ N
(
0, 4σ2

0

)
. (B.51)

Obviously, from (B.50), (B.51) and the fact that

s̃1 = −2s̃2 (1 + oP (1)) , (B.52)

one can conclude the joint asymptotic distribution in (3.27) of the main paper.
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10 Appendix C: Some Lemmas

In this appendix, we provide the necessary lemmas used in the proofs of the main theorems above.

Lemmas 1 and 2 are used in the proof of Theorem 1 and 2. Lemmas 3 and 4 are needed in the proof

of Lemma 1.

10.1 Lemmas 1 and 2 for Theorem 2

Lemma 1. In addition to Assumptions 1 and 3, we assume that τ is fixed or τ tends to infinity

satisfying

τ

(T − τ)δ/(2δ+2)
→ 0, as T →∞, (C.1)

for some constant δ > 0. Moreover, under (3.21), we assume that

E|ζit|2+2δ < +∞, (C.2)

where ζit is the i-th component of ζt and {ζt : . . . ,−1, 0, 1, . . .} is the sequence appeared in Assumption

3. And the covariance matrix Γ of the random vector(
Cij(h

′
) : i = 1, . . . ,m; j = 1, . . . ,m;h

′
= τ − s, . . . , τ + s

)
(C.3)

is positive definite, where Cij(h) is defined in (3.19) just above Theorem 1 in the main paper.

Then as N,T →∞, we have√
min

(
[Nα0 ], T − τ

)
(v̄
′
NSτ v̄N − µ

′
vΣτµv)

d→ N
(

0, σ2
0

)
,

where σ2
0 = limN,T→∞

min([Nα0 ],T−τ)
[Nα0 ] 4µ

′
vΣτΣvΣτµv + limN,T→∞

min([Nα0 ],T−τ)
T−τ (µ

′
v ⊗ µ

′
v)Ω(µv ⊗ µv),

Στ = E(FtF
′
t+τ ), µv = µvem(s+1), where em(s+1) is an m(s+ 1)× 1 vector with each element being 1,

and

Ω =



ω(τ, τ) · · · ω(τ, τ + s) · · · ω(τ, τ − s) · · · ω(τ, τ)

ω(τ + 1, τ) · · · ω(τ + 1, τ + s) · · · ω(τ + 1, τ − s) · · · ω(τ + 1, τ)
...

...
...

...
...

...
...

ω(τ − s, τ) · · · ω(τ − s, τ + s) · · · ω(τ − s, τ − s) · · · ω(τ − s, τ)

ω(τ, τ) · · · ω(τ, τ + s) · · · ω(τ, τ − s) · · · ω(τ, τ)


, (C.4)

with ω(h, r) =
(
Cov(fi1tfj1,t+h, fi2,tfj2,t+r) : 1 ≤ i1, j1, i2, j2 ≤ m

)
m2×m2

.

Proof. Write

v̄
′
NSτ v̄N − µ

′
vΣτµv = (v̄

′
N − µ

′
v)Sτ v̄N + µ

′
v(Sτ −Στ )v̄N + µ

′
vΣτ (v̄N − µv)

= (v̄
′
N − µ

′
v)(Sτ v̄N + Στµv) + µ

′
v(Sτ −Στ )v̄N . (C.5)

Since the elements of the vector v̄N are all i.i.d., we have√
[Nα0 ](v̄N − µv)

d→ N(0,Σv), as N →∞, (C.6)
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where Σv is an m(s+ 1)-dimensional diagonal matrix with each of the diagonal elements being σ2
v .

Moreover, under Assumption 3, we have

Sτ −Στ
i.p.→ 0, as T →∞, (C.7)

(one may see (C.10) below). It follows from (C.6) and (C.7) that, if τ is fixed,√
[Nα0 ](v̄

′
N − µ

′
v)(Sτ v̄N + Στµv)

=
√

[Nα0 ]
(

(v̄
′
N − µ

′
v)Sτ (v̄N − µv) + (v̄

′
N − µ

′
v)(Sτ −Στ )µv + 2(v̄

′
N − µ

′
v)Στµv

)
= 2

√
[Nα0 ](v̄

′
N − µ

′
v)Στµv + op(1)

d→ N (0, 4µ
′
vΣ
′
τΣvΣτµv). (C.8)

When τ satisfies (3.21), we have limτ→∞Στ = 0. In fact, we consider one element γ(h) =

Cov(fk,t, fk,t+h) of Στ :

γ(h) = E
( +∞∑
j1=0

bj1ζk,t−j1

+∞∑
j2=0

bj2ζt+h−j2

)
=

+∞∑
j1=0

bj1bh+j1 .

Then

+∞∑
h=0

|γ(h)| =
+∞∑
h=0

|
+∞∑
j=0

bjbh+j | ≤
( +∞∑
j=0

|bj |
)2

< +∞.

From this, we can see that γ(h)→ 0 as h→∞. So as τ →∞, Στ → 0. Hence, under this case,√
[Nα0 ](v̄

′
N − µ

′
v)(Sτ v̄N + Στµv)

i.p.→ 0. (C.9)

Under Assumption 3, by Theorem 14 in Chapter 4 of Hannan (1970), when τ is fixed, the sample

covariance of the stationary time series {ft : t = 1, 2, . . . , T} has the following asymptotic property:

√
T
(
vec
(
γ̂(h)− γ(h)

)
, 0 ≤ h ≤ `

)
d→ N(0,ω), (C.10)

where ‘vec’ means that for a matrix X = (x1, · · · ,xn) : q × n, vec(X) is the qn× 1 vector defined as

vec(X) =


x1

...

xn

 , (C.11)

γ̂(h) = 1
T−h

∑T−h
t=1 (ft − f̄ (1))(ft+h − f̄ (2))

′
, f̄ (1) = 1

T−h
∑T−h

t=1 ft, f̄ (2) = 1
T−h

∑T−h
t=1 ft+h, and γ(h) =

Cov(ft, ft+h). Note that the expression of vec
(
γ̂(h)

)
is

vec
(
γ̂(h)

)
=
(
c̃ov(1, 1), c̃ov(2, 1), . . . , c̃ov(m, 1), . . . , c̃ov(1,m), . . . , c̃ov(m,m)

)′
,

with c̃ov(i, j) = 1
T−h

∑T−h
t=1 fitfj,t+h − 1

T−h
∑T−h

t=1 fit
1

T−h
∑T−h

t=1 fj,t+h. The asymptotic covariance be-

tween
√
T
(
vec
(
γ̂(h)− γ(h)

))
and
√
T
(
vec
(
γ̂(r)− γ(r)

))
can be calculated as

ω(h, r) =
(
Cov(fi1tfj1,t+h, fi2,tfj2,t+r) : 1 ≤ i1, j1, i2, j2 ≤ m

)
m2×m2

.
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Here we would like to point out that although Theorem 14 of Hannan (1970) gives the CLT for the

sample covariance γ̌ = 1
T−h

∑T−h
t=1 fitfj,t+h, the asymptotic distribution of γ̂ is the same as that of γ̌

(one can verify it along similar lines).

The CLT in Theorem 14 of Hannan (1970) is provided for finite lags h and r only. If both h and r

tend to infinity as T →∞, we develop a corresponding CLT in Lemma 4 and the asymptotic variance

is

ω(h, r) = lim
h,r→∞

(
Cov(fi1tfj1,t+h, fi2,tfj2,t+r) : 1 ≤ i1, j1, i2, j2 ≤ m

)
m2×m2

. (C.12)

Moreover note that the expansion of vec
(
Sτ −Στ

)
has a form of

vec
(
Sτ −Στ

)
=



vec
(
γ̂(τ)− γ(τ)

)
...

vec
(
γ̂(τ + s)− γ(τ + s)

)
vec
(
γ̂(τ − 1)− γ(τ − 1)

)
...

vec
(
γ̂(τ + s− 1)− γ(τ + s− 1)

)
...

vec
(
γ̂(τ − s)− γ(τ − s)

)
...

vec
(
γ̂(τ)− γ(τ)

)



.

In view of this and (C.10), we conclude

√
T − τ

(
vec
(
Sτ −Στ

)) d→ N(0,Ω), (C.13)

where Ω is defined in (3.29).

By (C.13) and Slutsky’s theorem, we have, as N,T →∞,

√
T − τµ′v(Sτ −Στ )v̄N = µ

′
v

√
T − τ(Sτ −Στ )(v̄N − µv) + µ

′
v

√
T − τ(Sτ −Στ )µv

=
(
(v̄
′
N − µ

′
v)⊗ µ

′
v

)√
T − τvec(Sτ −Στ ) + (v̄

′
N ⊗ µ

′
v)
√
T − τvec(Sτ −Στ )

= (v̄
′
N ⊗ µ

′
v)
√
T − τvec(Sτ −Στ ) + op(1)

d→ N
(

0, (µ
′
v ⊗ µ

′
v)Ω(µv ⊗ µv)

)
, (C.14)

where the first equality uses vec(AXB) = (B
′ ⊗A)vec(X), with A : p ×m, B : n × q and X : m × n

being three matrices; and ⊗ denoting the Kronecker product; and the last asymptotic distribution uses

the fact that

v̄N
i.p.→ µv, (C.15)

which can be verified a s similar way to (C.6).

By (C.8), (C.14) and the independence between Sτ and v̄N , we have√
min([Nα0 ], T − τ)(v̄

′
NSτ v̄N − µ

′
vΣτµv)

=
√

min([Nα0 ], T − τ)(v̄
′
N − µ

′
v)(Sτ v̄N + Στµv) +

√
min([Nα0 ], T − τ)µ

′
v(Sτ −Στ )v̄N

d→ N
(

0, σ2
0

)
,
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where the last step uses the fact that

[Nα0 ](v̄
′
N − µ

′
v)Sτ v̄N = [Nα0 ](v̄

′
N − µ

′
v)Στµv + oP (1).

Lemma 2. Under Assumptions 1 and 3, we have

1

T − τ

T−τ∑
t=1

ūtūt+τ = OP

(
max

(γ1(τ)

N
,

1

N
√
T − τ

))
. (C.16)

Proof. First, we calculate the order of

E
( 1

T − τ

T−τ∑
t=1

ūtūt+τ

)2
. (C.17)

From Assumption 1, it follows that

E
( 1

T − τ

T−τ∑
t=1

ūtūt+τ

)2
=

1

N4(T − τ)2

T−τ∑
t1,t2=1

N∑
i1,...,i4=1

E(ui1t1ui2,t1+τui3t2ui4,t2+τ )

=
1

N4(T − τ)2

T−τ∑
t1,t2=1

N∑
i1,...,i4=1

E
( +∞∑
j1=0

φi1j1

+∞∑
s1=−∞

ξj1s1νj1,t1−s1

+∞∑
j2=0

φi2j2

+∞∑
s2=−∞

ξj2s2νj2,t1+τ−s2

×
+∞∑
j3=0

φi3j3

+∞∑
s3=−∞

ξj3s3νj3,t2−s3

+∞∑
j4=0

φi4j4

+∞∑
s4=−∞

ξj4s4νj4,t2+τ−s4

)
. (C.18)

Note that there are four random terms appearing in the expectation in (C.18), i.e. νj1,t1−s1 ,

νj2,t1+τ−s2 , νj3,t2−s3 , νj4,t2+τ−s4 . By Assumption 1, the expectation is not zero only if these four

random terms are pairwise equivalent or all of them are equivalent. In view of this, we have

E
( 1

T − τ

T−τ∑
t=1

ūtūt+τ

)2
= Φ1 + Φ2 + Φ3 + Φ4, (C.19)

where

Φ1 =
1

N4(T − τ)2

T−τ∑
t1,t2=1

N∑
i1,...,i4=1

E
( +∞∑
j1=0

φi1j1φi2j1

+∞∑
s1=−∞

ξj1s1ξj1,s1+τν
2
j1,t1−s1

)

× E
( +∞∑
j3 6=j1

φi3j3φi4j3

+∞∑
s3=−∞

ξj3s3ξj3,s3+τν
2
j3,t2−s3

)

=
1

N4(T − τ)2

T−τ∑
t1,t2=1

N∑
i1,...,i4=1

E(ui1t1ui2,t1+τ )E(ui3t2ui4,t2+τ )

=
1

N4(T − τ)2

T−τ∑
t1,t2=1

N∑
i1,...,i4=1

γ1(τ)γ2(|i1 − i2|)γ1(τ)γ2(|i3 − i4|) = O
(γ2

1(τ)

N2

)
, (C.20)

where the first equality uses νj1,t1−s1 = νj2,t1+τ−s2 and νj3,t2−s3 = νj4,t2+τ−s4 . The last equality uses

(2.6) in the main paper.
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For Φ2,

Φ2 =
1

N4(T − τ)2

T−τ∑
t1,t2=1

N∑
i1,...,i4=1

E
( +∞∑
j1=0

φi1j1φi3j1

+∞∑
s1=−∞

ξj1s1ξj1,t2−t1+s1ν
2
j1,t1−s1

)

× E
( +∞∑
j2 6=j1

φi2j2φi4j2

+∞∑
s2=−∞

ξj2s2ξj2,t2−t1+s2νj2,t1+τ−s2

)

≤ K

N4(T − τ)2

T−τ∑
t2=1

N∑
i1,i4=1

+∞∑
j1=0

|φi1j1 |
N∑
i3=1

|φi3j1 |
+∞∑

s1=−∞
|ξj1s1 |

T−τ∑
t1=1

|ξj1,t2−t1+s1 |

×
N∑
i2=1

|φi2j2 |
+∞∑
j2 6=j1

|φi4j2 |
+∞∑

s2=−∞
|ξj2s2 | = O

( 1

N2(T − τ)

)
, (C.21)

where the first equality uses νj1,t1−s1 = νj3,t2−s3 and νj2,t1+τ−s3 = νj4,t2+τ−s4 . The last equality uses

(2.4) in the main paper.

Similarly, for Φ3, we have

Φ3 =
1

N4(T − τ)2

T−τ∑
t1,t2=1

N∑
i1,...,i4=1

E
( +∞∑
j1=0

φi1j1φi4j1

+∞∑
s1=−∞

ξj1s1ξj1,t2−t1+τ−s1ν
2
j1,t1−s1

)

× E
( +∞∑
j2 6=j1

φi2j2φi3j2

+∞∑
s2=−∞

ξj2s2ξj2,t2−t1−τ+s2ν
2
j2,t1+τ−s2

)

≤ K

N4(T − τ)2

T−τ∑
t2=1

N∑
i1,i2=1

+∞∑
j1=0

|φi1j1 |
N∑
i4=1

|φi4j1 |
+∞∑

s1=−∞
|ξj1s1 |

T−τ∑
t1=1

|ξj1,t2−t1+τ−s1 |

×
+∞∑
j2 6=j1

|φi2j2 |
N∑
i3=1

|φi3j2 |
+∞∑

s2=−∞
|ξj2s2 | = O

( 1

N2(T − τ)

)
, (C.22)

where the first equality uses νj1,t1−s1 = νj4,t2+τ−s4 and νj2,t1+τ−s2 = νj3,t2−s3 . The last equality uses

(2.4) in the main paper.

For Φ4,

Φ4 =
1

N4(T − τ)2

T−τ∑
t1,t2=1

N∑
i1,...,i4=1

E
( +∞∑
j1=0

φi1j1φi3j1

+∞∑
s1=−∞

ξj1s1ξj1,t2−t1+s1ν
4
j1,t1−s1

× φi2j1φi4j1ξj1,τ+s1ξj1,t2−t1+τ+s1

)
≤ K

N4(T − τ)2

T−τ∑
t2=1

N∑
i1=1

+∞∑
j1=0

|φi1j1 |
N∑
i3=1

|φi3j1 |
+∞∑

s1=−∞
|ξj1s1 |

T−τ∑
t1=1

|ξj1,t2−t1+s1 |
N∑
i2=1

|φi2j1 |
N∑
i4=1

|φi4j1 |

= O
( 1

N3(T − τ)

)
, (C.23)

where the first equality uses νj1,t1−s1 = νj2,t1+τ−s2 = νj3,t2−s3 = νj4,t2+τ−s4 and the last equality uses

(2.4) in the main paper.

Hence by (C.19), (C.20), (C.21), (C.22) and (C.23), we have

E
( 1

T − τ

T−τ∑
t=1

ūtūt+τ

)2
= O

(
max

(
γ2

1(τ)

N2
,

1

N2(T − τ)

))
. (C.24)
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Moreover,

E
( 1

T − τ

T−τ∑
t=1

ūtūt+τ

)
= E

( 1

(T − τ)N2

T−τ∑
t=1

N∑
i,j=1

uituj,t+τ

)

=
1

(T − τ)N2

T−τ∑
t=1

N∑
i,j=1

γ1(τ)γ2(|i− j|) = O
(γ1(τ)

N

)
. (C.25)

Therefore, we have

V ar
( 1

T − τ

T−τ∑
t=1

ūtūt+τ

)
= O

(
max

(
γ2

1(τ)

N2
,

1

N2(T − τ)

))
. (C.26)

By (C.26), we have proved (C.16).

10.2 Two lemmas for Lemma 1

This section is to generalize Theorem 8.4.2 of Anderson (1994) to the case where the time lag tends to

infinity along with the sample size. To this end, we first list a crucial lemma below.

Lemma 3 (Theorem 2.1 of Romano and Wolf (2000)). Let {Xn,i} be a triangular array of mean zero

random variables. For each n = 1, 2, . . ., let d = dn, m
′

= mn, and suppose Xn,1, . . . , Xn,d is an

m
′
-dependent sequence of random variables. Define B2

n,`,a ≡ V ar
(∑a+`−1

i=a Xn,i

)
and B2

n ≡ B2
n,d,1 ≡

V ar
(∑d

i=1Xn,i

)
.

Let the following conditions hold. For some δ > 0 and some −1 ≤ γ < 1:

E|Xn,i|2+δ ≤ ∆n for all i; (C.27)

B2
n,`,a/(`

1+γ) ≤ Kn for all a and for all k ≥ m′ ; (C.28)

B2
n/(d(m

′
)γ) ≥ Ln; (C.29)

Kn/Ln = O(1); (C.30)

∆n/L
(2+δ)/2
n = O(1); (C.31)

(m
′
)1+(1−γ)(1+2/δ)/d→ 0. (C.32)

Then

B−1
n (Xn,1 + · · ·+Xn,d)⇒ N (0, 1). (C.33)

We are now ready to state the following generalization.

Lemma 4. Let ft =
∑+∞

r=0 brζt−r where ζt = (ζ1t, . . . , ζmt), consisting of i.i.d components with zero

mean and unit variance, is an i.i.d sequence of m-dimensional random vector. Assume that for some

constant δ > 0, E|ζit|2+2δ < +∞; and the coefficients {br : r = 0, 1, 2, . . .} satisfy
∑+∞

r=0 |br| < +∞.

Moreover, we assume that

h = o
(

(T − h)δ/(2δ+2)
)

(C.34)

and that the covariance matrix Γ of the random vector(
Cij(h

′
) : i = 1, . . . ,m; j = 1, . . . ,m;h

′
= h− s, . . . , h+ s

)
(C.35)
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is positive definite, where Cij(h
′
) is defined in (3.21).

Then, for any fixed positive constants s and m,(√
T − h′

(
Cij(h

′
)− σij(h

′
)
)

: 1 ≤ i, j ≤ m;h− s ≤ h′ ≤ h+ s
)

(C.36)

converges in distribution to a normal distribution with mean 0 and covariances(
lim
T→∞

(T − h)Cov
(
Ci1j1(h1), Ci2j2(h2)

)
: 1 ≤ i1, i2, j1, j2 ≤ m;h− s ≤ h1, h2 ≤ h+ s

)
. (C.37)

Proof. For 1 ≤ i, j ≤ m and 0 ≤ h ≤ T−1, write fi,t,k =
∑k

s′=0
bs′ ζi,t−s′ , Cij(h, k) = 1

T−h
∑T−h

t=1 fi,t,kfj,t+h,k

= 1
T−h

∑T−h
t=1

∑k
s1,s2=0 bs1bs2ζi,t−s1ζj,t+h−s2 , and

σij(h, k) = E(fi,t,kfj,t+h,k)

=
k∑

s1,s2=0

bs1bs2E(ζi,t−s1ζj,t+h−s2) =


0, i 6= j;∑k−h

s1=0 bs1bh+s1 , i = j;h = 0, 1, . . . , k;

0, i = j;h = k + 1, k + 2.

(C.38)

The proof of this lemma is similar to that of Theorem 8.4.2 of Anderson (1994) and it can be divided

into two steps:

Step 1: For any fixed k, the first step is to provide the asymptotic theorem for(√
T − h′

(
Cij(h

′
, k)− σij(h

′
, k)
)

: 1 ≤ i, j ≤ m;h− s ≤ h′ ≤ h+ s
)

; (C.39)

Step 2: The second step is to prove that for any 1 ≤ i, j ≤ m, in probability,

lim
T→∞

√
T − h

(
Cij(h

′
)− Cij(h

′
, k)
)

= 0. (C.40)

The second step can be verified as in Theorem 8.4.2 of Anderson (1994) (i.e. page 479-page 481)

and the details are omitted here.

Consider Step 1 now. Let

XT−h,t(i, j) =
1√
T − h

(
fi,t,kfj,t+h,k − σij(h, k)

)
, 1 ≤ i, j ≤ m, (C.41)

so that

√
T − h

(
Cij(h, k)− σ(h, k)

)
=

T−h∑
t=1

XT−h,t(i, j). (C.42)

By simple calculations, we see that fi,t,kfj,t+h,k is independent of fi,g,kfj,g+h,k if t and g differ by

more than k + h when i 6= j and differ by more than k when i = j. So {fi,t,kfj,t+h,k : t = 1, . . . , T − h}
is a (k + h) or k dependent covariance stationary process with mean σij(h, k) and covariance

Cov(fi,t,kfj,t+h,k, fi,g,kfj,g+h,k)

=

k∑
s1,...,s4=0

bs1bs2bs3bs4E(ζi,t−s1ζj,t+h−s2ζi,g−s3ζj,g+h−s4)− σ2
ij(h, k)

=

 A1, i 6= j;∑4
q=1Aq − σ2

ii(h, k), i = j,
(C.43)
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where

A1 =

k∑
s1=0

k∑
s2=0

bs1bs2bg−t+s1bg−t+s2 , A2 =

k∑
b1=0

k∑
b3=0

bs1bh+s1bs3bh+s3 ,

A3 =

k∑
s1=0

k∑
s3=0

bs1bt−g+h+s3bs3bg−t+h+s1 , A4 = −2

k∑
s1=0

bs1bh+s1bg−t+s1bg−t+h+s1 ,

where (C.43) uses the fact that E(ζi,t−s1ζj,t+h−s2ζi,g−s3ζj,g+h−s4) is not equal to zero if and only if the

four terms ζi,t−s1 , ζj,t+h−s2 , ζi,g−s3 , ζj,g+h−s4 are pairwise equivalent or they are all equivalent.

Hence for any 1 ≤ i, j ≤ m;h − s ≤ h
′ ≤ h + s, {XT−h′ ,t(i, j) : t = 1, . . . , T − h′} is a (k + h

′
)

or k dependent covariance stationary process. This implies that any linear combination of the process

{
∑m

i,j=1

∑h+s
h
′
=h−s ai,j,h′XT−h′ ,t(i, j) : t = 1, . . . , T−h−s} is a (k+h+s) dependent covariance stationary

process. Thus, we need to check Conditions (C.27)–(C.32) for such a linear combination of the process.

Moreover, one should note that it is enough to justify those conditions for each stochastic process

{XT−h′ ,t(i, j) : t = 1, . . . , T − h′}, where 1 ≤ i, j ≤ m;h− s ≤ h′ ≤ h+ s, since s and m are both fixed.

Observe that

E
∣∣∣XT−h′ ,t(i, j)

∣∣∣2+δ
=
( 1

T − h′
)(2+δ)/2

E
∣∣∣fi,t,kfj,t+h,k − σij(h, k)

∣∣∣2+δ

≤ K
( 1

T − h′
)(2+δ)/2(

E
∣∣∣fi,t,kfj,t+h,k∣∣∣2+δ

+
∣∣∣σi,j(h, k)

∣∣∣2+δ)
≤ K

( 1

T − h′
)(2+δ)/2

, (C.44)

where K is a constant number, and we have also used (C.38) and the fact that

E
∣∣∣fi,t,kfj,t+h,k∣∣∣2+δ

= E
∣∣∣ k∑
s1,s2=0

bs1bs2ζi,t−s1ζj,t+h−s2

∣∣∣2+δ

≤ K

k∑
s1,s2=0

|bs1 |2+δ|bs2 |2+δ
(
E|ζi,t−s1 |4+2δ + E|ζj,t+h−s2 |4+2δ

)
= O(1). (C.45)

In view of (C.44), taking ∆T = K
(

1
T−h′

)(2+δ)/2
, we have

E
∣∣∣XT−h′ ,t(i, j)

∣∣∣2+δ
≤ ∆T , (C.46)

implying (C.27).

We obtain from (C.43) that

B2
T,`,a(i, j) ≡ V ar(

a+`−1∑
t=a

XT−h′ ,t(i, j))

=
1

T − h′
a+`−1∑
t=a

a+`−1∑
g=a

Cov(fi,t,kfj,t+h′ ,k, fi,g,kfj,g+h′ ,k)

=


1

T−h′
∑a+`−1

t=a

∑a+`−1
g=a A1, i 6= j;

1
T−h′

∑a+`−1
t=a

∑a+`−1
g=a

(∑4
q=1Aq − σ2

ii(h
′
, k)
)
, i = j.

(C.47)
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Note that A2 = σ2
ii(h

′
, k). Below we only evaluate the remaining terms involving A1, A3, A4. By

the fact that
∑+∞

r=0 |br| < +∞, we have

∣∣∣ 1

T − h′
a+`−1∑
t=a

a+`−1∑
g=a

A1

∣∣∣ =
∣∣∣ 1

T − h′
a+`−1∑
t=a

a+`−1∑
g=a

k∑
s1=0

k∑
s2=0

bs1bs2bg−t+s1bg−t+s2

∣∣∣
≤ K

T − h′
a+`−1∑
t=a

k∑
s1=0

|bs1 |
k∑

s2=0

|bs2 |
a+`−1∑
g=a

|bg−t+s1 | = O
( `

T − h′
)
. (C.48)

Similarly, one may verify that

1

T − h′
a+`−1∑
t=a

a+`−1∑
g=a

Aj = O
( `

T − h′
)
, j = 3, 4. (C.49)

We conclude from (C.47)-(C.49) that

B2
T,`,a(i, j) = O

( `

T − h

)
. (C.50)

Taking ` = T −h in B2
T,`,a, we have B2

T = O(1). Moreover, for any linear combination of the process

{
∑
t

∑m
i,j=1

∑h+s
h′=h−s ai,j,h′XT−h′ ,t(i, j) : t = 1, . . . , T − h− s}, by the assumption of Γ > 0 (see (C.35),

its variance B2
T is

B2
T = a

′
Γa > 0. (C.51)

In view of (C.50) and (C.51), we can take γ = 0, KT = K̃1
1

T−h−s and LT = K̃2
1

T−h−s for the

purpose of verifying (C.28)–(C.32), where K̃1 and K̃2 are two constants. Then

B2
T,`,a

`1+γ
≤ KT , for all a and all ` ≥ k + h;

B2
T

(T − h′)(k + h)γ
≥ LT . (C.52)

Moreover, KT , LT and ∆T satisfy

KT

LT
= O(1) and

∆T

L
(2+δ)/2
T

= O(1). (C.53)

By (C.34), we have that, for any fixed k,

(k + h)2+2/δ

T − h
→ 0, as T →∞. (C.54)

From (C.46), (C.52), (C.53), (C.54) and Lemma 3, we conclude that(√
T − h′

(
Cij(h

′
, k)− σij(h

′
, k)
)

: 1 ≤ i, j ≤ m;h− s ≤ h′ ≤ h+ s
)

converges in distribution to a standard normal distribution with mean zero and covariances(
lim
T→∞

(T − h)Cov
(
Ci1j1(h1, k), Ci2j2(h2, k)

)
: 1 ≤ i1, i2, j1, j2 ≤ m;h− s ≤ h1, h2 ≤ h+ s

)
.

Hence the proof of step 1 is completed.
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