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Grouped functional time series

forecasting: an application to

age-specific mortality rates

Abstract

Age-specific mortality rates are often disaggregated by different attributes, such as sex, state

and ethnicity. Forecasting age-specific mortality rates at the national and sub-national levels

plays an important role in developing social policy. However, independent forecasts of age-

specific mortality rates at the sub-national levels may not add up to the forecasts at the national

level. To address this issue, we consider the problem of reconciling age-specific mortality rate

forecasts from the viewpoint of grouped univariate time series forecasting methods (Hyndman,

Ahmed, et al., 2011), and extend these methods to functional time series forecasting, where

age is considered as a continuum. The grouped functional time series methods are used to

produce point forecasts of mortality rates that are aggregated appropriately across different

disaggregation factors. For evaluating forecast uncertainty, we propose a bootstrap method

for reconciling interval forecasts. Using the regional age-specific mortality rates in Japan,

obtained from the Japanese Mortality Database, we investigate the one- to ten-step-ahead point

and interval forecast accuracies between the independent and grouped functional time series

forecasting methods. The proposed methods are shown to be useful for reconciling forecasts of

age-specific mortality rates at the national and sub-national levels, and they also enjoy improved

forecast accuracy averaged over different disaggregation factors.

Keywords: forecast reconciliation; hierarchical time series forecasting; bottom-up; optimal

combination; Japanese Mortality Database

2



Grouped functional time series forecasting: an application to age-specific mortality rates

1 Introduction

Functional time series often consist of random functions observed at regular time intervals.

Depending on whether or not the continuum is also a time variable, functional time series can

be grouped into two categories. On one hand, functional time series can arise by separating an

almost continuous time record into natural consecutive intervals such as days, months or years

(see Hörmann and Kokoszka, 2012). Examples include daily price curves of a financial stock

(Kokoszka and Zhang, 2012), and monthly sea surface temperature in climatology (Shang and

Hyndman, 2011). On the other hand, functional time series can also arise when observations

in a time period can be considered together as finite realizations of an underlying continuous

function; for example, annual age-specific mortality rates in demography (e.g., Chiou and

Müller, 2009; Hyndman and Ullah, 2007).

In either case, the functions obtained form a time series {Xt, t ∈ Z}, where each Xt is a (random)

function Xt(z) and z ∈ I represents a continuum on a finite interval. We refer to such data

structures as functional time series.

There has been a rapidly growing body of research on functional time series forecasting methods.

From a parametric viewpoint, Bosq, 2000 proposed the functional autoregressive process of

order 1 and derived one-step-ahead forecasts that are based on a regularized form of the Yule-

Walker equations. From a nonparametric perspective, Besse, Cardot, and Stephenson, 2000

proposed functional kernel regression to measure the temporal dependence via a similarity

measure characterized by neighborhood distance (also known as semi-metric), kernel function

and bandwidth. Hyndman and Ullah, 2007 use functional principal component analysis to

decompose smoothed functional time series into a set of functional principal components

and their associated principal component scores. The temporal dependency in the original

functional time series is inherited by the correlation within each principal component score

and the possible cross-correlations between principal component scores. Hyndman and Ullah,

2007 applied univariate time series forecasting models to forecast these scores individually,

while Aue, Norinho, and Hörmann, 2015 considered a multivariate time series forecasting

method to capture any correlations between principal component scores. Both univariate and

multivariate time series forecasting methods have their own advantages and disadvantages (see

Aue, Norinho, and Hörmann, 2015; Peña and Sánchez, 2007, for a comparison).
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In this paper, we also use functional principal component regression as a forecasting technique,

applied to a large multivariate set of functional time series with rich structure. There have been

relatively few research contributions dealing with multivariate functional time series forecasting

(see for example, Chiou, Yang, and Chen, 2015; Kowal, Matteson, and Ruppert, 2015). To

our knowledge, there has been no study that takes account of aggregation constraints within

multivariate functional time series forecasting. This is the gap we wish to address.

To be specific, we consider age-specific mortality rates observed annually as an example of a

functional time series, where the continuum is the age variable. These age-specific mortality

rates can be observed at the national level, and can be disaggregated by various attributes

such as sex, state or ethnicity. Forecasts are often required for national mortality, as well as

sub-national mortality disaggregated by different attributes. When a functional forecasting

method is applied to each subset, the sum of the forecasts will not generally add up to the

forecasts obtained by applying the method to the aggregated national data.

This problem is known as forecast reconciliation, which has been addressed for univariate time

series forecasting. Sefton and Weale, 2009 considered forecast reconciliation in the context of

national account balancing, while Hyndman, Ahmed, et al., 2011 demonstrated the usefulness

of forecast reconciliation methods in the context of tourist demand. In this paper, we develop

reconciliation methods tailored for multivariate functional time series.

We put forward two statistical methods, namely bottom-up and optimal combination methods,

to reconcile point and interval forecasts of age-specific mortality, and potentially improve the

point and interval forecast accuracies. The bottom-up method involves forecasting each of the

disaggregated series and then using simple aggregation to obtain forecasts for the aggregated

series (Kahn, 1998). This method works well where the bottom-level series have high signal-to-

noise ratio. For highly disaggregated series, this does not tend to work well as the series become

too noisy; also, any relationships between series are ignored. This motivated the development of

an optimal combination method (Hyndman, Ahmed, et al., 2011), where forecasts are obtained

independently for all series at all levels of disaggregation and then a linear regression model

is used with a generalized least-squares estimator to optimally combine and reconcile these

forecasts. We propose a modification of this approach for use with functional time series.
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Using the national and sub-national Japanese age-specific mortality rates from 1975 to 2013,

we compare the point and interval forecast accuracies among the independent forecasting,

bottom-up and optimal combination methods. For evaluating the point forecast accuracy, we

consider the mean absolute forecast and root mean squared forecast errors, and found that the

bottom-up method gives the most accurate overall point forecasts. For evaluating the interval

forecast accuracy, we use the mean interval score, and again found that the bottom-up method

gives the most accurate overall interval forecasts.

The rest of this paper is structured as follows. In Section 2, we describe the motivating data set,

which is Japanese national and sub-national age-specific mortality rates. In Section 3, we describe

the functional principal component regression for producing point and interval forecasts, then

introduce grouped functional time series forecasting methods in Section 4. We evaluate and

compare point and interval forecast accuracies between the independent and grouped functional

time series forecasting methods in Sections 5 and 6. Conclusions are presented in Section 7,

along with some reflections on how the methods presented here can be further extended.

2 Japanese age-specific mortality rates for 47 prefectures

In many developed countries such as Japan, increases in longevity and an aging population

have led to concerns regarding the sustainability of pensions, health and aged care systems (see,

for example, Coulmas, 2007; OECD, 2013). These concerns have resulted in a surge of interest

amongst government policy makers and planners in accurately modeling and forecasting age-

specific mortality rates. Sub-national forecasts of age-specific mortality rates are useful for

informing policy within local regions. Any improvement in the forecast accuracy of mortality

rates will be beneficial for determining the allocation of current and future resources at the

national and sub-national levels.

We study Japanese age-specific mortality rates from 1975 to 2013, obtained from the Japanese

Mortality Database (2015). We consider ages from 0 to 99 in single years of age, while the last age

group contains all ages at and beyond 100. The structure of the data is displayed in Table 1 where

each row denotes a level of disaggregation. At the top level, we have total age-specific mortality

rates for Japan. We can split these total mortality rates by sex, by region, or by prefecture. There

are eight regions in Japan, which contain a total of 47 prefectures. The most disaggregated data
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arise when we consider the mortality rates for each combination of prefecture and sex, giving a

total of 47× 2 = 94 series. In total, across all levels of disaggregation, there are 168 series.

Table 1: Hierarchy of Japanese mortality rates.

Level Number of series
Japan 1
Sex 2
Region 8
Sex × Region 16
Prefecture 47
Sex × Prefecture 94
Total 168

2.1 Rainbow plots

Figure 1 shows rainbow plots of the female and male age-specific log mortality rates in Japan

from 1975 to 2013 (Hyndman and Shang, 2010). The time ordering of the curves follows the

color order of a rainbow, where curves from the distant past are shown in red and the more

recent curves are shown in purple. The figures show typical mortality curves for a developed

country, with rapidly decreasing mortality rates in the early years of life, followed by an increase

during the teenage years, a plateau for young adults, and then a steady increase from about the

age of 30. Females have lower mortality rates than males at all ages.

From Figures 1a and 1b, the observed mortality rates are not smooth across age due to observa-

tional noise. To obtain smooth functions and deal with possible missing values, we consider a

penalized regression spline smoothing with monotonic constraint, described in Section 3.2. It

takes into account the shape of log mortality curves (see also D’Amato, Piscopo, and Russolillo,

2011; Hyndman and Ullah, 2007).

Figures 1c and 1d demonstrate smooth age-specific mortality rates for Japan females and males,

and we apply smoothing to all series at different levels of disaggregation. We have developed a

Shiny app (Chang et al., 2015) in R (R Core Team, 2015) to allow interactive exploration of the

smoothing of all the data; this is available in the online supplementary material.
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0 20 40 60 80 100

−
10

−
8

−
6

−
4

−
2

Japan: male death rates  (1975−2013)

(b) Observed male mortality rates
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(c) Smoothed female mortality rates
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Figure 1: Functional time series graphical displays

2.2 Image plots

Another visual perspective of the data is shown in the image plots of Figure 2. Here we graph

the log of the ratio of mortality rates for each prefecture to mortality rates for the whole country,

thus allowing relative mortality comparisons to be made. A divergent color palette is used with

blue representing positive values and orange denoting negative values. The prefectures are

ordered geographically from north to south, so the most northerly prefecture (Hokkaidō) is at

the top of the panels, and the most southerly prefecture (Okinawa) is at the bottom of the panels.

The top row of panels shows mortality rates for each prefecture and age, averaged over all

years. Several striking features become apparent. There are strong differences between the
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Figure 2: Image plots showing log ratios of mortality rates. The top panel shows mortality rates averaged
over years, while the bottom panel shows mortality rates averaged over ages. Prefectures are
numbered geographically from north to south.

prefectures for children, especially females; this is possibly due to socio-economic differences,

and accessibility of health services. The most southerly prefecture of Okinawa has particularly

low mortality rates for older people; this is consistent with the extreme longevity for which

Okinawa is famous (see for example, Suzuki, Willcox, and Willcox, 2004; Takata et al., 1987;

Willcox et al., 2007).

The bottom row of panels shows mortality rates for each prefecture and year, averaged over all

ages. Here there is less information to be seen, but three outliers are highlighted. In 2011, in

prefectures 44 (Miyagi) and 45 (Iwate) there was a large increase in mortality compared to other

prefectures. These are northern coastal regions, and the inflated relative mortality is due to the

tsunami of 11 March 2011. There is a corresponding decrease in relative mortality in some other

provinces.

In 1995, there is an increase in mortality for prefecture 20 (Hyōgo). This corresponds with the

Kobe (Great Hanshin) earthquake of 17 January 1995.

Also evident is the decreased female mortality in Okinawa up until 1990, perhaps suggesting a

recent decline in the relative mortality advantages enjoyed by residents in this region.

Shang & Hyndman: 29 February 2016 8



Grouped functional time series forecasting: an application to age-specific mortality rates

3 Methodology

3.1 Functional principal component analysis

Let (Xt : t ∈ Z) be an arbitrary functional time series. It is assumed that the observations

Xt are elements of the Hilbert space H = L2(I) equipped with the inner product 〈w,v〉 =∫
I w(z)v(z)dz, where z represents a continuum and I represents the function support range.

Each function is a square integrable function satisfying ‖Xt‖2 =
∫
I X

2
t (z)dz < ∞ and associated

norm. All random functions are defined on a common probability space (Ω, A, P). The notation

X ∈ Lp
H(Ω, A, P) is used to indicate E(‖X ‖p) < ∞ for some p > 0. When p = 1, X (z) has the

mean curve µ(z) = E[X (z)]; when p = 2, a non-negative definite covariance function is given by

cX (y,z) = Cov[X (y),X (z)] = E{[X (y)− µ(y)][X (z)− µ(z)]} (1)

for all y,z ∈ I . The covariance function cX (y,z) in (1) allows the covariance operator of X ,

denoted by KX to be defined as

KX (φ)(z) =
∫
I

cX (y,z)φ(y)dy.

Via Mercer’s lemma, there exists an orthonormal sequence (φk) of continuous function in L2(I)

and a non-increasing sequence λk of positive numbers such that

cX (y,z) =
∞

∑
k=1

λkφk(y)φk(z), y,z ∈ I .

By the separability of Hilbert spaces, the Karhunen–Loève expansion of a stochastic process

X (z) can be expressed as

X (z) = µ(z) +
∞

∑
k=1

βkφk(z)

= µ(z) +
∞

∑
k=1

√
λkξkφk(z),

where ξk = 1/
√

λk
∫
I [X (z)− µ(z)]φk(z)dz is an uncorrelated random variable with zero mean

and unit variance. The principal component scores βk =
√

λkξk are given by the projection of

X (z)− µ(z) in the direction of the kth eigenfunction φk, i.e., βk = 〈X (z)− µ(z),φk(z)〉.
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As a widely used dimension reduction technique, functional principal component analysis

summarizes the main features of an infinite-dimensional object by a few basis functions. For

theoretical, methodological, and applied aspects of functional principal component analysis,

consult the survey articles by Hall, 2011, Shang, 2014, Wang, Chiou, and Müller, 2015 and Reiss

et al., 2016.

3.2 Nonparametric smoothing technique

Functional data are intrinsically infinite dimensional, although we can only observe functional

data at dense grid points (see for example, Ramsay and Silverman, 2005) or sparse grid points

(see for example, Müller, 2005). In practice, the observed data are often contaminated by

random noise, referred to as measurement errors. As defined by Wang, Chiou, and Müller, 2015,

measurement errors can be viewed as random fluctuations around a continuous and smooth

function, or as actual errors in the measurement.

We assume that there are underlying L2 continuous and smooth functions Xt(z) such that

Yt(zj) = Xt(zj) + σt(zj)εt,j, t = 1, . . . ,n, j = 1, . . . , p,

where Yt(zj) denotes the raw log mortality rates, {εt,j} are independent and identically dis-

tributed (iid) random variables across t and j with zero mean and unit variance, and σt(zj)

allows for heteroskedasticity. We observe that measurement errors are realized only at those

time points zj where measurements are being taken. As a result, these errors are treated as

discretized data εt,j. However, in order to estimate the variance σ2
t (zj), we assume that there is a

latent smooth function σ2(z) observed at discrete time points.

Let mt(zj) = exp[Yt(zj)] be the observed central mortality rates for age zj in year t and define

Et(zj) to be the population of age zj at 30 June in year t (often known as the “exposure-at-risk”).

The observed mortality rate follows a Poisson distribution with estimated variance

σ̂2
t (zj) =

1
mt(zj)Et(zj)

.

For modeling age-specific log mortality, Hyndman and Ullah, 2007 advocated the application of

weighted penalized regression splines with a monotonic constraint for ages above 65, where the
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weights are equal to the inverse variances, wt(zj) = 1/σ̂2
t (zj). For each year t,

X̂t(zj) = argmin
θt(zj)

M

∑
j=1

wt(zj)
∣∣Yt(zj)− θt(zj)

∣∣+ λ
M−1

∑
j=1

∣∣∣θ ′t(zj+1)− θ
′
t(zj)

∣∣∣ ,
where zj represents different ages (grid points) in a total of M grid points, λ represents a

smoothing parameter, θ
′

denotes the first derivative of smooth function θ, which can be both

approximated by a set of B-splines (see for example, de Boor, 2001). The L1 loss function and L1

penalty function are used to obtain robust estimates. This monotonic constraint helps to reduce

the noise from estimation of high ages (see also D’Amato, Piscopo, and Russolillo, 2011; Fang

and Härdle, 2015).

3.3 Functional principal component regression

By using functional principal component analysis, a time series of smoothed functions X (z) =

{X1(z), . . . ,Xn(z)} is decomposed into orthogonal functional principal components and their

associated principal component scores, given by

Xt(z) = µ(z) +
∞

∑
k=1

βt,kφk(z)

= µ(z) +
K

∑
k=1

βt,kφk(z) + et(z), (2)

where µ(z) is the mean function; {φ1(z), . . . ,φK(z)} is a set of the first K functional principal

components; β1 = (β1,1, . . . , β1,n)
> and {β1, . . . ,βK} denotes a set of principal component scores

and βk ∼ N(0,λk) where λk is the kth eigenvalue of the covariance function in (1); et(z) denotes

the model truncation error function with mean zero and finite variance; and K < n is the number

of retained components. Expansion (2) facilitates dimension reduction as the first K terms often

provide a good approximation to the infinite sums, and thus the information contained in X (z)

can be adequately summarized by the K-dimensional vector (β1, . . . ,βK).

Although it can be a research topic on its own, there are several approaches for selecting

K: (1) scree plot or the fraction of variance explained by the first few functional principal

components (Chiou, 2012); (2) pseudo-versions of Akaike information criterion and Bayesian

information criterion (Yao, Müller, and Wang, 2005); (3) predictive cross validation leaving out

one or more curves (Rice and Silverman, 1991); (4) bootstrap methods (Hall and Vial, 2006).
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Here, the value of K is chosen as the minimum that reaches a certain level of the proportion of

total variance explained by the K leading components such that

K = argmin
K:K≥1

{
K

∑
k=1

λ̂k

/ ∞

∑
k=1

λ̂k1{λ̂k>0} ≥ δ

}
,

where δ = 90%, 1{λ̂k>0} is to exclude possible zero eigenvalues, and 1{·} represents the binary

indicator function.

In a dense and regularly spaced functional time series, the mean function µ̂(z) = 1
n ∑n

t=1Xt(z)

and covariance function ĉX (y,z) can be empirically estimated and they are shown to be

consistent under the weak dependency (Hörmann and Kokoszka, 2010). From the empiri-

cal covariance function, we can extract empirical functional principal component functions

B =
{

φ̂1(z), . . . , φ̂K(z)
}

using singular value decomposition. Conditioning on the smoothed

functions X (z) = {X1(z), . . . ,Xn(z)} and the estimated functional principal components B, the

h-step-ahead point forecast of Xn+h(z) can be obtained as

X̂n+h|n(z) = E[Xn+h(z)|X (z),B] = µ̂(z) +
K

∑
k=1

β̂n+h|n,kφ̂k(z),

where β̂n+h|n,k represents the time series forecasts of the kth principal component scores, which

can be obtained by using a univariate time series forecasting method.

3.4 A univariate time series forecasting method

Hyndman and Shang, 2009 considered a univariate time series forecasting method to obtain

β̂n+h|n,k, such as autoregressive integrated moving average (ARIMA) model. This univariate

time series forecasting method is able to model non-stationary time series containing a stochastic

trend component. Since the yearly age-specific mortality rates do not contain seasonality, the

ARIMA has a general form of

(1− ψ1B− · · · − ψpBp)(1− B)dβk = α + (1 + θ1B + · · ·+ θqBq)wk,

where α represents the intercept, (ψ1, . . . ,ψp) denote the coefficients associated with the au-

toregressive component, (θ1, . . . ,θq) denote the coefficients associated with the moving aver-

age component, B denotes the backshift operator, d denotes the differencing operator, and
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wk = {w1,k, . . . ,wn,k} represents a white-noise error term. We use the automatic algorithm of

Hyndman and Khandakar, 2008 to choose the optimal orders of autoregressive p, moving

average q and difference order d. The value of d is selected based on successive Kwiatkowski-

Phillips-Schmidt-Shin (KPSS) unit-root tests (Kwiatkowski et al., 1992). KPSS tests are used for

testing the null hypothesis that an observable time series is stationary around a deterministic

trend. We first test the original time series for a unit root; if the test result is significant, then

we test the differenced time series for a unit root. The procedure continues until we obtain

our first insignificant result. Having determined d, the orders of p and q are selected based

on the optimal Akaike information criterion (AIC) with a correction for small sample sizes

(Akaike, 1974; Hurvich and Tsai, 1989). Having identified the optimal ARIMA model, maximum

likelihood method can then be used to estimate the parameters.

4 Grouped functional time series forecasting techniques

4.1 Notation

For ease of explanation, we will introduce the notation using the Japanese example. The

generalization to other contexts should be apparent. The Japanese data follow a multi-level

geographical hierarchy coupled with a sex grouping variable. The geographical hierarchy is

shown in Figure 3. Japan is split into eight regions, which in turn can be split into 47 prefectures.

Japan

R1

P1

R2

P2 · · · P7

· · · R8

P40 · · · P47

Figure 3: The Japanese geographical hierarchy tree diagram, with eight regions and 47 prefectures.

The data can also be split by sex. So each of the nodes in the geographical hierarchy can also

be split into both males and females. We refer to a particular disaggregated series using the

notation X*S meaning the geographical area X and the sex S, where X can take the values shown

in Figure 3 and S can take values M (males), F (females) or T (total). For example: R1*F denotes
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females in Region 1; P1*T denotes females and males in Prefecture 1; Japan*M denotes males in

Japan; and so on.

Let EX*S,t(z) denote the exposure-at-risk for series X*S in year t and age z, and let DX*S,t(z) be

the number of deaths for series X*S in year t and age z. Then the age-specific mortality rate is

given by RX*S,t(z) = DX*S,t(z)/EX*S,t(z). To simplify expressions, we will drop the age argument

(z). Then for a given age, we can write



RJapan*T,t

RJapan*F,t

RJapan*M,t

RR1*T,t

RR2*T,t
...

RR8*T,t

RR1*F,t

RR2*F,t
...

RR8*F,t

RR1*M,t

RR2*M,t
...

RR8*M,t

RP1*T,t

RP2*T,t
...

RP47*T,t

RP1*F,t

RP1*M,t

RP2*F,t

RP2*M,t
...

RP47*F,t

RP47*M,t


︸              ︷︷              ︸

Rt

=



EP1*F,t
EJapan*T,t

EP1*M,t
EJapan*T,t

EP2*F,t
EJapan*T,t

EP2*M,t
EJapan*T,t

EP3*F,t
EJapan*T,t

EP3*M,t
EJapan*T,t

· · · EP47*F,t
EJapan*T,t

EP47*M,t
EJapan*T,t

EP1*F,t
EJapan*F,t

0 EP2*F,t
EJapan*F,t

0 EP3*F,t
EJapan*F,t

0 · · · EP47*F,t
EJapan*F,t

0

0 EP1*M,t
EJapan*M,t

0 EP2*M,t
EJapan*M,t

0 EP3*M,t
EJapan*M,t

· · · 0 EP47*M,t
EJapan*M,t

EP1*F,t
ER1,T,t

EP1*M,t
ER1,T,t

0 0 0 0 · · · 0 0

0 0 EP2*F,t
ER2,T,t

EP2*M,t
ER2,T,t

EP3*F,t
ER2,T,t

EP3*M,t
ER2,T,t

· · · 0 0
...

...
...

...
...

... · · ·
...

...

0 0 0 0 0 0 · · · EP47*F,t
ER8,T,t

EP47*M,t
ER8,T,t

EP1*F,t
ER1,F,t

0 0 0 0 0 · · · 0 0

0 0 EP2*F,t
ER2,F,t

0 EP3*F,t
ER2,F,t

0 · · · 0 0
...

...
...

...
...

... · · ·
...

...

0 0 0 0 0 0 · · · EP47*F,t
ER8,F,t

0

0 EP1*M,t
ER1,M,t

0 0 0 0 · · · 0 0

0 0 0 EP2*M,t
ER2,M,t

0 EP3*M,t
ER2,M,t

· · · 0 0
...

...
...

...
...

... · · ·
...

...

0 0 0 0 0 0 · · · 0 EP47*M,t
ER8,M,t

EP1*F,t
EP1,T,t

EP1*M,t
EP1,T,t

0 0 0 0 · · · 0 0

0 0 EP2*F,t
EP2,T,t

EP2*M,t
EP2,T,t

0 0 · · · 0 0
...

...
...

...
...

... · · ·
...

...

0 0 0 0 0 0 · · · EP47*F,t
EP47,T,t

EP47*M,t
EP47,T,t

1 0 0 0 0 0 · · · 0 0

0 1 0 0 0 0 · · · 0 0

0 0 1 0 0 0 · · · 0 0

0 0 0 1 0 0 · · · 0 0
...

...
...

...
...

... · · ·
...

...

0 0 0 0 0 0 · · · 1 0

0 0 0 0 0 0 · · · 0 1


︸                                                                                                        ︷︷                                                                                                        ︸

St



RP1*F,t

RP1*M,t

RP2*F,t

RP2*M,t
...

RP47*F,t

RP47*M,t


︸           ︷︷           ︸

bt
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or Rt = Stbt where Rt is a vector containing all series at all levels of disaggregation, bt is a

vector of the most disaggregated series, and St shows how the two are related.

Hyndman, Ahmed, et al., 2011 considered four hierarchical forecasting methods for univariate

time series, namely the top-down, bottom-up, middle-out and optimal combination methods.

Among the four, only bottom-up and optimal combination methods are suitable for forecasting

a non-unique group structure. These two methods are reviewed in Sections 4.2 and 4.3, and

their point and interval forecast accuracy comparisons with the independent forecasting method

are presented in Sections 5.2 and 6.2.

4.2 Bottom-up method

One of the commonly used methods to forecasting grouped time series is the bottom-up

method (e.g., Dangerfield and Morris, 1992; Zellner and Tobias, 2000). This method in-

volves first generating base forecasts for each of the most disaggregated series and then ag-

gregating these to produce all required forecasts. For example, let us consider the Japanese

data. We first generate h-step-ahead base forecasts for the most disaggregated series, namely

b̂n+h =
[
R̂P1*F,n+h, R̂P1*M,n+h, R̂P2*F,n+h, R̂P2*M,n+h, . . . , R̂P47*F,n+h, R̂P47*M,n+h

]>.

Then the historical ratios that form the St summing matrix are forecast using an automated

ARIMA algorithm (Hyndman and Khandakar, 2008). That is, let pt = EX*S,t/EY*W,t be a non-zero

element of St. We forecast each time series {p1, . . . , pn} for h-step-ahead to obtain p̂n+h. These

are then used to form the matrix Sn+h. Thus we obtain reconciled forecasts for all series:

Rn+h = Sn+hb̂n+h.

The bottom-up method has the agreeable feature that it is simple and intuitive, and always

results in series that are “aggregate consistent” (i.e., that the resulting forecasts satisfy the same

aggregation constraints as the original data). The method performs well when the signal-to-noise

ratio is relatively strong for the most disaggregated series. On the other hand, it may lead to

inaccurate forecasts of the top-level series, in particular when there are missing or noisy data at

the bottom level (see for example, Schwarzkopf, Tersine, and Morris, 1988; Shlifer and Wolff,

1979, in the univariate time series context).
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4.3 Optimal combination method

Instead of considering only the bottom-level series, Hyndman, Ahmed, et al. (2011) proposed

a method in which base forecasts for all aggregated and disaggregated series are computed

independently, and then the resulting forecasts are reconciled so that they satisfy the aggrega-

tion constraints. As the base forecasts are independently generated, they will not usually be

“aggregate consistent”. The optimal combination method combines the base forecasts through

linear regression by generating a set of revised forecasts that are as close as possible to the

base forecasts but that also aggregate consistently within the group. The method is derived by

writing the base forecasts as the response variable of the linear regression

R̂n+h = Sn+hβn+h + εn+h,

where R̂n+h is a matrix of h-step-ahead base forecasts for all series, stacked in the same order as

for original data; βn+h = E[bn+h | R1, . . . ,Rn] is the unknown mean of the forecast distributions

of the most disaggregated series; and εn+h represents the reconciliation errors.

To estimate the regression coefficients, Hyndman, Ahmed, et al., 2011 and Hyndman, Lee, and

Wang (2016) proposed a weighted least squares solution which we adapt to our problem as

follows:

β̂n+h =
(
S>n+hW

−1Sn+h

)−1
S>n+hW

−1R̂n+h,

where W is a diagonal matrix containing the one-step-ahead forecast variances for each series.

Then the revised forecasts are given by

Rn+h = Sn+hβ̂n+h = Sn+h

(
S>n+hSn+h

)−1
S>n+hR̂n+h.

By construction, these are aggregate consistent and involve a combination of all the base forecasts.

They are also unbiased since E[Rn+h] = Sn+hβn+h.
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4.4 Constructing uniform and pointwise prediction intervals

To assess the forecast uncertainty, we adapt the method of Aue, Norinho, and Hörmann, 2015

for computing uniform and pointwise prediction intervals. The method can be summarized in

the following steps:

1. Using all observed data, compute the K-variate score vectors (β1, . . . ,βK) and the sample

functional principal components
[
φ̂1(z), . . . , φ̂K(z)

]
. Then, we can construct in-sample

forecasts

Xζ+h(z) = β̂ζ+h,1φ̂1(z) + · · ·+ β̂ζ+h,Kφ̂K(z),

where (β̂ζ+h,1, . . . , β̂ζ+h,K) are the elements of the h-step-ahead prediction obtained from

(β1, . . . ,βK) by a means of univariate time-series forecasting method, for ζ ∈ {K, . . . ,n− h}.

2. With the in-sample forecasts, we calculate the in-sample forecast errors

ε̂ω(z) = Xζ+h(z)− X̂ζ+h(z),

where M = n− h− K + 1 and ω ∈ {1,2, . . . , M}.

3. Based on these in-sample forecast errors, we can sample with replacement to obtain a

series of bootstrapped forecast errors, from which we obtain lower and upper bounds,

denoted by γl(z) and γu(z), respectively. We then seek a tuning parameter ϕα such that

α× 100% of the residual functions satisfy

ϕα × γl(z) ≤ ε̂ω(z) ≤ ϕα × γu(z), z ∈ I .

The residuals ε̂1(z), . . . , ε̂M(z) are expected to be approximately stationary and, by the law

of large numbers, to satisfy

1
M

M

∑
ω=1

1
(

ϕα × γl(z) ≤ ε̂ω(z) ≤ ϕα × γu(z)
)

≈ Pr
[

ϕα × γl(z) ≤ Xn+h(z)− X̂n+h(z) ≤ ϕα × γu(z)
]

.
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Note that Aue, Norinho, and Hörmann, 2015 calculate the standard deviation of

[ε̂1(z), . . . , ε̂M(z)], which leads to a parametric approach of constructing prediction intervals.

Here we consider a nonparametric approach, as it allows us to reconcile bootstrapped forecasts

among different functional time series in a hierarchy. Step 3 can easily be extended to pointwise

prediction interval, where we determine a tuning parameter πα such that α × 100% of the

residual data points satisfy

πα × γl(zj) ≤ ε̂ω(zj) ≤ πα × γu(zj),

where j symbolizes discretized data points. Then, the h-step-ahead pointwise prediction intervals

are given as

πα × γl(zj) ≤ Xn+h(zj)− X̂n+h(zj) ≤ πα × γu(zj).

5 Results of the point forecasts

5.1 Point forecast evaluation

A rolling window analysis of a time series model is commonly used to assess model and

parameter stabilities over time. It assesses the constancy of a model’s parameter by computing

parameter estimates and their forecasts over a rolling window of a fixed size through the sample

(see Zivot and Wang, 2006, Chapter 9 for details). Using the first 29 observations from 1975

to 2003 in the Japanese age-specific mortality rates, we produce one- to ten-step-ahead point

forecasts. Through a rolling window approach, we re-estimate the parameters in the univariate

time series forecasting models using the first 30 observations from 1975 to 2004. Forecasts from

the estimated models are then produced for one to nine-step-ahead. We iterate this process by

increasing the sample size by one year until reaching the end of data period in 2013. This process

produces 10 one-step-ahead forecasts, 9 two-step-ahead forecasts, . . . , and 1 ten-step-ahead

forecast. We compare these forecasts with the holdout samples to determine the out-of-sample

point forecast accuracy.

To evaluate the point forecast accuracy, we use the mean absolute forecast error (MAFE) and root

mean squared forecast error (RMSFE). They measure how close the forecasts are in comparison
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to the actual values of the variable being forecast. For each series k, and they can be written as

MAFEk(h) =
1

101× (11− h)

10

∑
ς=h

101

∑
j=1

∣∣∣X k
n+ς(zj)− X̂ k

n+ς(zj)
∣∣∣ ,

RMSFEk(h) =

√√√√ 1
101× (11− h)

10

∑
ς=h

101

∑
j=1

[
X k

n+ς(zj)− X̂ k
n+ς(zj)

]2
,

where X k
n+ς(zj) represents the actual holdout sample for the jth age and ςth curve of the fore-

casting period in the kth series, while X̂ k
n+ς(zj) represents the point forecasts for the holdout

sample.

By averaging MAFEk(h) and RMSFEk(h) across the number of series within each level of

disaggregation, we obtain an overall assessment of the point forecast accuracy for each level

within the collection of series, denoted by MAFE(h) and RMSFE(h). They are defined as

MAFE(h) =
1

mk

mk

∑
k=1

MAFEk(h),

RMSFE(h) =
1

mk

mk

∑
k=1

RMSFEk(h),

where mk denotes the number of series at the kth level of disaggregation, for k = 1, . . . , K.

For 10 different forecast horizons, we consider two summary statistics to evaluate point forecast

accuracy between the methods for national and sub-national population. The summary statistics

chosen are the mean and median values due to their suitability for handling squared and

absolute errors (Gneiting, 2011). They are given by

Mean (RMSFE) =
1

10

10

∑
h=1

RMSFE(h),

Median (MAFE) =
1
2
[MAFE(5) + MAFE(6)] ,

where [5] and [6] represent the 5th and 6th terms after ranking MAFE(h) for h = 1,2, . . . ,10 from

smallest to largest.
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5.2 Point forecast comparison

Averaging over all series at each level of the Japanese data hierarchy, Tables 2 and 3 present

MAFE(h) and RMSFE(h) values using the independent functional time series and two grouped

functional time series forecasting methods. The bold entries highlight the method that performs

the best for each level of the hierarchy and each forecast horizon, based on the smallest forecast

error. In the short-term forecast horizon, the independent functional time series forecasting and

optimal combination methods generally have the smaller forecast errors than the bottom-up

method. As the forecast horizon increases from h = 3 to h = 10, the bottom-up method performs

the best with the smallest forecast errors. At the bottom level, it is not surprising that the

independent functional time series and bottom-up methods produce the same forecast accuracy.

Averaged over all levels of a hierarchy, it is advantageous to use the grouped functional time

series forecasting methods over the independent functional time series forecasting method. For

this example, we recommend the bottom-up method.

Table 2: MAFEs (×100) in the holdout sample between the independent functional time series forecasting
and two grouped functional time series forecasting methods applied to the Japanese age-specific
mortality rates. The bold entries highlight the method that performs best for each level of the
hierarchy and each forecast horizon, as well as summary statistic.

Forecasting h Total Sex Region Region Prefecture Prefecture
method (Sex) (Sex)
Independent 1 0.134 0.133 0.157 0.209 0.252 0.378

2 0.194 0.181 0.189 0.225 0.253 0.390
3 0.220 0.213 0.212 0.235 0.263 0.365
4 0.256 0.259 0.248 0.262 0.279 0.374
5 0.290 0.301 0.272 0.287 0.292 0.381
6 0.323 0.334 0.300 0.312 0.311 0.399
7 0.375 0.393 0.347 0.357 0.337 0.420
8 0.415 0.432 0.388 0.398 0.367 0.445
9 0.461 0.460 0.412 0.411 0.378 0.451
10 0.457 0.427 0.395 0.391 0.366 0.437

Median 0.306 0.318 0.286 0.299 0.301 0.394
Bottom-up 1 0.116 0.134 0.179 0.220 0.256 0.378

2 0.123 0.142 0.196 0.235 0.273 0.390
3 0.129 0.151 0.166 0.216 0.242 0.365
4 0.142 0.178 0.177 0.234 0.248 0.374
5 0.138 0.202 0.178 0.249 0.249 0.381
6 0.160 0.234 0.192 0.273 0.260 0.399
7 0.179 0.283 0.211 0.313 0.268 0.420
8 0.205 0.322 0.236 0.354 0.283 0.445
9 0.228 0.353 0.248 0.371 0.283 0.451

Continued on next page
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Forecasting h Total Sex Region Region Prefecture Prefecture
method (Sex) (Sex)

10 0.209 0.329 0.231 0.354 0.267 0.437

Median 0.151 0.218 0.194 0.261 0.264 0.394
Optimal combination 1 0.111 0.130 0.164 0.207 0.247 0.371

2 0.120 0.149 0.181 0.226 0.261 0.383
3 0.139 0.176 0.168 0.224 0.246 0.373
4 0.164 0.217 0.190 0.255 0.258 0.388
5 0.183 0.258 0.203 0.284 0.266 0.404
6 0.208 0.293 0.223 0.314 0.280 0.426
7 0.248 0.352 0.255 0.364 0.299 0.456
8 0.280 0.394 0.291 0.413 0.321 0.487
9 0.301 0.422 0.302 0.427 0.326 0.497
10 0.282 0.399 0.286 0.412 0.310 0.483

Median 0.195 0.276 0.213 0.299 0.273 0.415

Table 3: RMSFEs (×100) in the holdout sample between the independent functional time series fore-
casting and two grouped functional time series forecasting methods applied to the Japanese
age-specific mortality rates. The bold entries highlight the method that performs best for each
level of the hierarchy and each forecast horizon, as well as summary statistic.

Forecasting h Total Sex Region Region Prefecture Prefecture
method (Sex) (Sex)
Independent 1 0.468 0.464 0.528 0.719 0.812 1.300

2 0.589 0.573 0.611 0.765 0.814 1.367
3 0.658 0.657 0.680 0.804 0.843 1.235
4 0.740 0.776 0.765 0.880 0.885 1.264
5 0.812 0.876 0.824 0.951 0.917 1.285
6 0.876 0.946 0.876 0.996 0.958 1.320
7 0.992 1.087 0.982 1.117 1.021 1.375
8 1.084 1.176 1.068 1.205 1.077 1.418
9 1.170 1.222 1.101 1.210 1.084 1.399
10 1.135 1.107 1.042 1.127 1.024 1.331

Mean 0.852 0.888 0.848 0.977 0.943 1.330
Bottom up 1 0.413 0.469 0.614 0.740 0.856 1.300

2 0.423 0.495 0.729 0.836 0.956 1.367
3 0.466 0.549 0.570 0.742 0.778 1.235
4 0.513 0.624 0.613 0.800 0.804 1.264
5 0.540 0.692 0.637 0.854 0.812 1.285
6 0.579 0.750 0.671 0.900 0.840 1.320
7 0.643 0.865 0.736 1.011 0.875 1.375
8 0.706 0.948 0.794 1.099 0.910 1.418
9 0.744 1.000 0.815 1.116 0.907 1.399
10 0.673 0.899 0.752 1.038 0.842 1.331

Mean 0.570 0.729 0.693 0.914 0.858 1.330
Optimal combination 1 0.430 0.490 0.571 0.712 0.816 1.276

2 0.462 0.546 0.654 0.795 0.881 1.327
3 0.527 0.619 0.606 0.782 0.805 1.265
4 0.592 0.714 0.666 0.863 0.843 1.307

Continued on next page
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Forecasting h Total Sex Region Region Prefecture Prefecture
method (Sex) (Sex)

5 0.644 0.805 0.710 0.939 0.867 1.343
6 0.694 0.875 0.754 0.996 0.901 1.387
7 0.779 1.004 0.839 1.122 0.957 1.459
8 0.851 1.094 0.913 1.220 1.004 1.513
9 0.889 1.146 0.926 1.234 1.003 1.497
10 0.819 1.048 0.865 1.155 0.936 1.427

Mean 0.669 0.834 0.750 0.982 0.901 1.380

6 Results of the interval forecasts

6.1 Interval forecast evaluation

In order to evaluate pointwise interval forecast accuracy, we utilize the interval score of Gneiting

and Raftery, 2007 (see also Gneiting and Katzfuss, 2014). For each year in the forecasting period,

the h-step-ahead prediction intervals were calculated at the 100(1− α)% nominal coverage

probability. We consider the common case of the symmetric 100(1− α)% prediction interval,

with lower and upper bounds that are predictive quantiles at α/2 and 1− α/2, denoted by

X̂ l
n+h(zj) and X̂ u

n+h(zj). As defined by Gneiting and Raftery, 2007, a scoring rule for the pointwise

interval forecast at time point zj is

Sα

[
X̂ l

n+h(zj), X̂ u
n+h(zj);Xn+h(zj)

]
=
[
X̂ u

n+h(zj)− X̂ l
n+h(zj)

]
+

2
α

[
X̂ l

n+h(zj)−Xn+h(zj)
]

1
{
Xn+h(zj) < X̂ l

n+h(zj)
}
+

2
α

[
Xn+h(zj)− X̂ u

n+h(zj)
]

1
{
Xn+h(zj) > X̂ u

n+h(zj)
}

,

where α denotes the level of significance, customarily α = 0.2. The interval score rewards a

narrow prediction interval, if and only if the true observation lies within the prediction interval.

The optimal interval score is achieved when Xn+h(zj) lies between X̂ l
n+h(zj) and X̂ u

n+h(zj), and

the distance between X̂ l
n+h(zj) and X̂ u

n+h(zj) is minimal.

For different time points in a curve and different days in the forecasting period, the mean

interval score is defined by

Sα(h) =
1

101× (11− h)

10

∑
ς=h

101

∑
j=1

Sα

[
X̂ l

n+ς(zj), X̂ u
n+ς(zj);Xn+ς(zj)

]
,
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where Sα

[
X̂ l

n+ς(zj), X̂ u
n+ς(zj);Xn+ς(zj)

]
denotes the interval score at the ςth curve of the fore-

casting period.

For 10 different forecast horizons, we consider two summary statistics to evaluate interval

forecast accuracy. The summary statistics chosen are the mean and median values, given by

Mean
(
Sα

)
=

1
10

10

∑
h=1

Sα(h),

Median
(
Sα

)
=

1
2
[
Sα(5) + Sα(6)

]
.

6.2 Interval forecast comparison

In Table 4, we present the mean interval scores for one-step-ahead to ten-step-ahead forecasts,

using the independent and two grouped functional time series forecasting methods. The

independent functional time series generally gives the most accurate interval forecasts at the

national level, while the grouped functional time series forecasting methods demonstrate

superior forecast accuracy for the sub-national level. The bottom-up method gives the most

accurate interval forecasts at the region level, while the optimal combination method gives

the most accurate interval forecasts at the prefecture level. Based on the overall mean interval

scores, the bottom-up methods outperform the independent functional time series forecasting

and optimal combination methods, in terms of interval forecast accuracy. Thus, the bottom-up

method is recommended for this example.

Table 4: Mean interval scores (×100) in the holdout sample between the independent functional time
series forecasting and two grouped functional time series forecasting methods applied to the
Japanese age-specific mortality rates. The bold entries highlight the method that performs best
for each level of the hierarchy and each forecast horizon, as well as two summary statistics.

Forecasting h Total Sex Region Region Prefecture Prefecture
method (Sex) (Sex)
Independent 1 0.523 0.627 1.396 2.184 1.396 2.184

2 0.676 0.819 1.372 2.276 1.372 2.276
3 0.738 0.914 1.373 2.060 1.373 2.060
4 0.910 1.076 1.421 2.091 1.421 2.091
5 1.123 1.249 1.484 2.104 1.484 2.104
6 1.198 1.315 1.565 2.175 1.565 2.175
7 1.322 1.557 1.643 2.250 1.643 2.250
8 1.390 1.666 1.734 2.350 1.734 2.350
9 1.558 1.720 1.754 2.294 1.754 2.294

Continued on next page
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Forecasting h Total Sex Region Region Prefecture Prefecture
method (Sex) (Sex)

10 1.437 1.580 1.752 2.307 1.752 2.307
Mean 1.088 1.252 1.549 2.209 1.549 2.209
Median 1.160 1.282 1.524 2.217 1.524 2.217

Bottom up 1 0.856 0.832 0.974 1.166 1.439 2.184
2 0.972 0.955 1.156 1.321 1.578 2.276
3 1.060 1.079 0.885 1.131 1.291 2.060
4 1.206 1.268 0.962 1.207 1.316 2.091
5 1.248 1.406 0.978 1.261 1.334 2.104
6 1.354 1.584 1.056 1.370 1.372 2.175
7 1.454 1.859 1.120 1.508 1.414 2.250
8 1.538 2.067 1.194 1.664 1.471 2.350
9 1.616 2.166 1.185 1.698 1.409 2.294
10 1.384 1.881 1.056 1.562 1.449 2.307

Mean 1.269 1.510 1.057 1.389 1.407 2.209
Median 1.301 1.495 1.056 1.346 1.412 2.217

Optimal combination 1 0.924 0.861 0.995 1.101 1.268 2.029
2 1.037 1.032 1.157 1.247 1.363 2.089
3 1.241 1.270 1.066 1.208 1.205 1.968
4 1.450 1.560 1.208 1.354 1.251 2.014
5 1.582 1.809 1.289 1.494 1.289 2.054
6 1.759 2.063 1.401 1.656 1.344 2.122
7 1.957 2.441 1.556 1.889 1.416 2.208
8 2.108 2.712 1.705 2.107 1.493 2.315
9 2.207 2.846 1.719 2.166 1.468 2.284
10 1.879 2.490 1.533 1.981 1.429 2.299

Mean 1.614 1.908 1.363 1.620 1.353 2.138
Median 1.670 1.936 1.345 1.575 1.354 2.105

7 Conclusion

We have extended two grouped time series forecasting methods, namely the bottom-up and

optimal combination methods, from univariate to functional time series. These grouped func-

tional time series forecasting methods were derived by coupling grouped univariate time series

forecasting methods with functional time series analysis.

The bottom-up method models and forecasts data series at the most disaggregated level, and

then aggregates the results using the summing matrix. In that summing matrix, each element is

forecast from the historical data using univariate time series models.

The optimal combination method combines the base forecasts obtained from independent

functional time series forecasting methods using linear regression. It generates a set of revised
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forecasts that are as close as possible to the base forecasts, but that also aggregate consistently

with the known grouping structure. Under some mild assumptions, the regression coefficient

can be estimated by ordinary least squares.

Using age-specific mortality rates at the national and sub-national levels in Japan, we compare

the one-step-ahead to ten-step-ahead forecast accuracy between the independent functional

time series forecasting method and the two proposed grouped functional time series forecasting

methods. We found that the grouped functional time series forecasting methods produced more

accurate point and interval forecasts than those obtained by the independent functional time

series forecasting method. In addition, the grouped functional time series forecasting methods

produce forecasts that obey the natural group structure, thus giving forecast mortality rates at

the sub-national levels that add up to the forecast mortality rates at the national level.

We have also presented a way of constructing uniform and pointwise prediction intervals for

grouped functional time series using bootstrapping. The method calculates in-sample forecast

errors between the in-sample holdout data and their reconstruction by functional principal

component regression. By sampling with replacement from the bootstrapped in-sample errors,

we obtain lower and upper bounds, and then find an optimal tuning parameter for achieving

uniform or pointwise nominal coverage probability. With this tuning parameter, out-of-sample

uniform or pointwise prediction intervals are obtained.

There are a few ways in which the paper can be further extended and we briefly outline three.

First, the methodology can be applied to cause-specific mortality, considered in Murray and

Lopez, 1997, Girosi and King, 2008 and Gaille and Sherris, 2015. Second, due to the availability of

data, we have considered disaggregation of mortality by sex and geography. However, mortality

rates can be further disaggregated with the inclusion of other factors, such as socioeconomic

status inter alia (Bassuk, Berkman, and Amick III, 2002; Singh et al., 2013). Finally, coherent

forecasting methods can be used to jointly model and forecast age-specific mortality rates from

two or more populations (see for example, Hyndman, Booth, and Yasmeen, 2013; Li and Lee,

2005).
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SUPPLEMENTARY MATERIAL

R-package for functional time series forecasting The R-package ftsa containing code to pro-

duce point and interval forecasts from independent functional time series forecast-

ing method described in the article. The R-package can be obtained from CRAN

(https://cran.r-project.org/web/packages/ftsa/index.html).

Code for grouped functional time series forecasting The R code to produce point and interval

forecasts from the two grouped functional time series forecasts described in the article.

(gfts.zip)

Code for shiny application The R code to produce a shiny user interface for plotting every

series in the Japanese data hierarchy. (shiny.zip)
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